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THE IMPACT OF SERIAL CORRELATION ON RISK HEDGING

EGLE Aigars, (LV)

Abstract. There are a number of publications that documents the predictability of
financial asset returns. In our paper we develop a continuous diffusion model for the case
of serially correlated stock returns. We obtain European call option pricing formula written
on a stock with autocorrelated returns and show that even small levels of predictability
due to serial correlation can give substantial deviation from results obtain by Black-Sholes
formula. Finally, we derive formulas for sensitivities of the value of European call option
and show how in risk management widely used option hedging parameters depend on
assumptions made about correlation in underlying asset returns.
Key words and phrases. serial correlation, diffusion approximation, option pricing

Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

1.1 Empirical Evidence of the Predictability of Asset Returns

There is a wide list of financial research that documents the predictability of financial asset
returns. Auto correlation in short term stock index returns has been analyzed by Lo and
MacKinley in [1], Jokivuolle in [2] and Stoll and Whaley in [3]. They argue that positive
autocorrelation shows up in index returns due to presence of stale prices of stocks included into
the index. Above mentioned happens when the increase in the number of stocks comes from
inclusion of small capitalization stocks, which are known to trade less frequently than large
ones. Due to infrequent trading in small capitalization stocks the observed index value do not
reflect the true market value of the underlying stock portfolio as the index value is calculated
using the last observed stock transaction prices.



Aplimat - Journal of Applied Mathematics

Conrad and Kaul in [4] avoiding the nonsynchronos trading problem analyze autocorrelation
of Wednesday-Wednesday returns for size grouped portfolios and find first order autocorrelation
of weekly returns varying between 0.09 to 0.30. For longer time periods Fama and French in [5]
find that autocorrelation of returns of diversified portfolios of NYSE stocks becomes strongly
negative.

The evidence of serial autocorrelation in stock and stock index returns contradicts assump-
tions made in widely accepted stock return model used by Black and Sholes in [6] and Merton
in [7] to derive call option pricing formula. They assume that asset returns are distributed
independently of each other.

1.2 Convergence of stochastic difference equations to stochastic differential equa-
tions

In this section we would like to present general conditions for a sequence of finite-dimensional
discrete time Markov processes {hXt}h↓0 to converge weakly to an Ito process. These are drawn
from Nelson [10].

The formal set-up is as follows: Let D([0,∞), Rn) be the space of mappings from [0,∞)
into Rn that are continuous from the right with finite left limits, and let B(Rn) denote the
Borel sets on Rn. D is a metric space when endowed with Skorohod metric. For each h > 0, let
Mkh be the σ-algebra generated by kh, hX0, hXh, hX2h, ..., hXkh, and let νh be a probability
measure on (Rn, B(Rn)). For each h > 0 and each k = 0, 1, 2, 3, ..., let Πh,kh(x, ·) be a transition
function on Rn, i.e.

(a) Πh,kh(x, ·) is a probability measure on (Rn, B(Rn)) for all x ∈ Rn,
(b) Πh,kh(·, Γ) is B(Rn) measurable for all Γ ∈ B(Rn).
For each h > 0, let Ph be the probability measure on D([0,∞), Rn) such that

Ph[hX0 ∈ Γ] = νh(Γ) (1)

for any Γ ∈ B(Rn),
Ph[hXt =h Xkh, kh ≤ t < (k + 1)h] = 1 (2)

and
Ph[hX(k+1)h ∈ Γ | Mkh] = Πh,kh(hXkh, Γ) (3)

almost surely under Ph for all k ≥ 0 and Γ ∈ B(Rn).
For each h > 0, (1) specifies the distribution of the random starting point and (3) the

transition probabilities of n-dimentional discrete time markov process hXkh. We form the
continuous time process hXt from the discrete time process hXkh by (2), making hXt a step
function with jumps at times h, 2h, 3h and so on.

Now if for each h > 0 and each ε > 0 we define

ah(x, t) ≡ h−1

∫
‖y−x‖≤1

(y − x)(y − x)′Πh,h[t/h](x, dy), (4)

bh(x, t) ≡ h−1

∫
‖y−x‖≤1

(y − x)Πh,h[t/h](x, dy), (5)

16 volume 4 (2011), number 3
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Δh,ε(x, t) ≡ h−1

∫
‖y−x‖≤ε

Πh,h[t/h](x, dy), (6)

where [t/h] is the integer part of t/h, i.e. the largest integer k ≤ t/h, it is possible under some
assumtions which are in detail specified by Nelson in [10] to prove the following theorem:

Theorem 1.1 Under some assumptions, the sequence of hXt process defined by (1)-(3) con-
verges weakly (i.e. in distribution) as h ↓ 0 to the Xt process defined by the stochastic integral
equation

Xt = X0 +

∫ t

0

b(Xs, s)ds +

∫ t

0

σ(Xs, s)dWn,s, (7)

where Wn,t is an n-dimentional standard Brownian motion, independent of X0, and where for
any Γ ∈ B(Rn), P (X0 ∈ Γ) = ν(Γ). Such an Xt process exists and is distributionally unique.
This distribution does not depend on the choice of σ(·, ·). Finally, Xt remains finite in finite
time intervals almost surely, i.e. for all T > 0,

P [ sup
0≤t≤T

‖Xt‖ < ∞] = 1. (8)

Carkovs in [8] follows a similar approach as Nelson [10] and analysis a discrete Markov
dynamic system given in a form of stochastic difference equation

xt+1 = xt + εf1(xt, yt+1) + ε2f2(xt, yt+1) (9)

where {yt} is an ergodic Markov chain with transition probability p(y, dz), invariant measure
μ and potential operator Π. Using interpolation

s ∈ [tε2, (t + 1)ε2] (10)

and
Xε2(s) := (xt+1 − xt)(sε

−2 − t) + xt (11)

Carkovs in his paper [8] is able to prove that for any {t1, t2, ..., tn} distribution of vector
{Xε2(t1), Xε2(t2), ..., Xε2(tn)} for sufficiently small ε2 may be approximated by distribution of
vector {X(t1), X(t2), ..., X(tn)} defined by solution of stochastic Ito differential equation

dX(s) = a(X(s))ds + σ(X(s))dw(s), (12)

where
a := f̄2 + [PΠf ′

1]f1, (13)

σ2 := f̄ 2
1 + 2f1PΠf1, (14)

Pf(y) :=

∫
Y

f(z)p(y, dz), (15)

f̄ :=

∫
Y

f(z)μ(dz). (16)

volume 4 (2011), number 3 17
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1.3 The Black-Scholes Option Pricing Formula

The development of option pricing models in [6] and [7] is based on existence of a dynamic
investment strategy involving the underlying asset and risk free bonds that exactly replicates
payoff of the option. In case when stock price S(t) follows log-normal diffusion process

dS(t) = μS(t)dt + σS(t)dW (t), (17)

where σ is the diffusion coefficient, μ - the drift coefficient and W (t) - a standard Wiener process.
It is assumed that trading is frictionless and continuous. Then the no-arbitrage condition yields
the following differential equation on the call price C(t)

1

2
σ2S2(t)

∂2C(t)

∂S2(t)
+ μS(t)

∂C(t)

∂S(t)
+

∂C(t)

∂t
= μC(t), (18)

where μ is the instantaneous risk-free rate of return. Given the two boundary conditions for
the European call option

C(S(T ), T ) = max(S(T ) − K, 0), (19)

C(0, t) = 0, (20)

there exists a unique solution to the partial differential equation (18) and is called Black-Sholes
formula

CBS(S(t), t) = S(t)N(d1) − K exp(−μ(T − t))N(d2), (21)

where

d1 ≡
log(S(t)/K) + (μ + 1

2
σ2)(T − t)

σ
√

T − t
, (22)

and
d2 ≡ d1 − σ

√
T − t, (23)

where N() is the standard normal cumulative distribution function.
The Black-Sholes formula (21) does not depend on drift μ, but may be an arbitrary function

of S(t) and other economical variables. This feature implies that the Black-Sholes formula is ap-
plicable to a different asset return processes and could reflect complex patterns of predictability
and dependence on other observed and unobserved economic factors.

1.4 The Greeks

The Greeks are vital tools in risk management. Each Greek measures the sensitivity of the
value of a portfolio to a small change in a given underlying parameter, so that component
risks may be treated in isolation, and the portfolio rebalanced accordingly to achieve a desired
exposure.

The Greeks in the BlackScholes model are relatively easy to calculate, a desirable property
of financial models, and are very useful for derivatives traders, especially those who seek to

18 volume 4 (2011), number 3
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hedge their portfolios from adverse changes in market conditions. For this reason, those Greeks
which are particularly useful for hedging delta, gamma and vega are well-defined for measuring
changes in Price, Time and Volatility. Although μ is a primary input into the BlackScholes
model, the overall impact on the value of an option corresponding to changes in the risk-free
interest rate is generally insignificant and therefore higher-order derivatives involving the risk-
free interest rate are not common.

The most common of the Greeks are the first order derivatives: Delta, Vega, Theta and Rho
as well as Gamma, a second-order derivative of the value function. The above mentioned sen-
sitivities are common enough that they have common names, and we will list explicit formulas
as they have been derived for a European call C(S(t), t) by Haug in [9].

Delta, Δ, measures the rate of change of option value with respect to changes in the
underlying asset’s price. Delta is the first derivative of the value C of the option with respect
to the underlying instrument’s price S.

Δ(S(t), t) ≡ ∂C

∂S
= N(d1) (24)

Theta,Θ, measures the sensitivity of the value of the derivative to the passage of time t.

Θ(S(t), t) ≡ ∂C

∂t
= −S(t)N(d1)σ

2
√

T − t
− μK exp(−μ(T − t))N(d2) (25)

Vega, ν measures sensitivity to volatility σ. Vega is the derivative of the option value with
respect to the volatility of the underlying.

ν(S(t), t) ≡ ∂C

∂σ
= S(t)N(d1)

√
T − t (26)

Rho, R, measures sensitivity to the applicable interest rate. Rho is the derivative of the
option value with respect to the risk free rate. Except under extreme circumstances, the value
of an option is least sensitive to changes in the risk-free-interest rates. For this reason, rho is
the least used of the first-order Greeks.

R(S(t), t) ≡ ∂C

∂μ
= K(T − t) exp(−μ(T − t))N(d2) (27)

Gamma, Γ, measures the rate of change in the delta with respect to changes in the un-
derlying asset price. Gamma is the second derivative of the value function with respect to the
underlying price. Gamma is important because it corrects for the convexity of value. When
a trader seeks to establish an effective delta-hedge for a portfolio, the trader may also seek
to neutralize the portfolio’s gamma, as this will ensure that the hedge will be effective over a
wider range of underlying price movements.

γ(S(t), t) ≡ ∂Δ

∂S
=

N(d1)

S(t)σ
√

T − t
(28)
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2 Derivation of a Formula for Serially Correlated Stock Return Process

The simplest mathematical model describing development of stock’s price St and involving
assumption of serial autocorrelation in stock’s returns under commonly used condition on risk
neutrality of probabilistic measure P may be written in the following way

St+1 = St(1 + ε2μ + εσyt+1), (29)

where yt is a Gaussian random sequence with zero mean and unit variance. When it is considered
that these random numbers are independent we may write that yt follows AR(1):

Figure 1: Ratio of
σ2

eff

σ2 as a function of autocorrelation coefficient ρ

yt+1 = ρyt +
√

1 − ρ2ξt+1, (30)

where {ξt} is i.i.d. Gaussian sequence, Eξt = 0, Eξ2
t = 1.

To be able use formulas (12)-(15) derived by Carkovs in [8] we denote xt ≡ St and rewrite
equation (29) in the following form

xt+1 = xt + εσyt+1xt + ε2μxt (31)

and now we can use (12) with

f1(xt, yt+1) = σyt+1xt (32)

and

f2(xt, yt+1) = μxt. (33)
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After calculation of (13) and (14) we derive continuous time approximation of stochas-
tic difference equation (29) in a form of diffusion process satisfying stochastic Ito differential
equation

dS(t) = S(t)(μ + σ2k)dt + S(t)
√

1 + 2kσdw(t), (34)

where

k :=
∞∑

m=1

Corr{yt+m, yt} =
ρ

1 − ρ
. (35)

Here we can introduce σ2
eff as an effective volatility of the diffusion process (34)

σ2
eff = σ2(1 + 2k). (36)

From Figure 1 we can observe that this effective volatility can be substantially greater then σ2

if serial correlation is positive and converges to 0 as correlation approaches -1.
After substitution of (35) into (34) we get the final equation

dS(t) = S(t)(μ + σ2 ρ

1 − ρ
)dt + S(t)

√
1 + ρ

1 − ρ
σdw(t). (37)

3 Option Pricing on Stocks with Autocorrelated Returns

Now let’s derive European call option pricing formulas if underlying stock’s price process S(t)
satisfies the stochastic differential equation (34). The boundary conditions for the European
call option is given by (19) and (20). Using well known techniques we get the following results

C(S(t), t) = S(t)N(d1) − K exp(−(μ + σ2k)(T − t))N(d2), (38)

where

d1 =
log(S(t)/K) + (μ + σ2k + 1

2
σ2(1 + 2k))(T − t)

σ
√

(1 + 2k)(T − t)
, (39)

and
d2 = d1 − σ

√
(1 + 2k)(T − t), (40)

where N() is the standard normal cumulative distribution function.
Now we are ready to derive formulas used to calculate sensitivities of call option price to

changes in underlying parameters.
Delta, Δ, the first derivative of the value C of the option with respect to the underlying

instrument’s price S will have the same form as in (24):

Δ(S(t), t) =
∂C

∂S
= N(d1). (41)

Theta,Θ, the sensitivity of the value of the derivative to the passage of time t now will
have the following form

Θ(S(t), t) =
∂C

∂t
= −S(t)N(d1)σ

√
1 + 2k

2
√

T − t
− (μ + σ2k)K exp(−(μ + σ2k)(T − t))N(d2) (42)
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Figure 2: Value of Call Option for Different Correlation Coefficients ρ

Figure 3: Value of Call Option’s Delta for Different Correlation Coefficients ρ
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Vega, ν, the sensitivity to volatility σ will be

ν(S(t), t) =
∂C

∂σ
= S(t)N(d1)

√
(1 + 2k)(T − t) (43)

Figure 4: Value of Call Option’s Vega for Different Correlation Coefficients ρ

Rho, R, the sensitivity to the applicable interest rate

R(S(t), t) ≡ ∂C

∂μ
= K(T − t) exp(−(μ + σ2k)(T − t))N(d2) (44)

Figure 5: Value of Call Option’s Rho for Different Correlation Coefficients ρ

Gamma, Γ, that measures the rate of change in the delta with respect to changes in the
underlying asset price will be

γ(S(t), t) =
∂Δ

∂S
=

N(d1)

S(t)σ
√

(1 + 2k)(T − t)
(45)
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Figure 6: Value of Call Option’s Gamma for Different Correlation Coefficients ρ

4 Conclusions and Further Research

In our paper we have derived an analytical formulas for calculation of the value of European call
option and its sensitivities to underlying parameters. The formulas demonstrate an important
relationship between the value of the option, its risk parameters and underlying asset return
autocorrelation coefficient. We have been able to show that autocorrelation can have substantial
impact on obtained results and it should be considered when someone tries to estimate correct
historical volatility of the underlying return process. In a case of no autocorrelation, our result
reduces to a well known Black-Sholes option pricing formula.

The approach used in our paper can be further applied to discrete time stochastic difference
equation systems where volatility is stochastic or it is modeled by generalized autoregressive
conditional heteroscedasticity process.

Another topic which deserves further analysis is how the convergence of discrete time
stochastic difference equation to its continuous time approximation depends on autocorrela-
tion coefficient.
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Abstract: In this work an algorithm is developed for finding optimal time series model for GDP 

forecasting. Latvian GDP data with quarterly observation frequency is taken as time series. 

ARMA Analysis of Latvian GDP time series is performed. The set of model has been 

constructed. In order to check the accuracy of models, different residual tests are performed: 

autocorrelation, heteroscedasticity and normality of residual distribution. Models are compared 

in their forecast quality. 

 

Keywords: time series, Gross Domestic Product, ARMA (Autoregressive Moving Average) 

Analysis, Residual tests, Serial Correlation, Heteroskedasticity 

 

 

1 Introduction 

 

The analysis and forecast of GDP for any time and any country is important task for economists, 

policy makers and entrepreneurs. These researches are consisting of many objective and subjective 

factors. In econometrics forecast, not only statistical methods are used, but a lot of economical and 

political events must be taken into account. 

Working on the paper, different methods of econometrical modelling have been analyzed. For 

example, analysis methods for German GDP forecast that are described by Lutkepohl in “Applied 

Time Series Analysis” [1]. Lutkepohl described different ways of ARMA and Residual analysis of 

time series. In this paper author uses familiar methods of statistical analysis of time series for 

forecasting Latvian GDP. Computer software enabled the author to perform the search for the best 

models for certain time series. Based on the analysis of these models, a search algorithm of optimal 

model is created.  

In order to find an optimal model of forecasting Latvian Gross Domestic Product, two different 

cases of Latvian GDP series with quarterly observation frequency are taken. The first case is 

Latvian quarterly GDP series in levels (Latvian lats) and second case is the same data in percentage 

growth. The GDP series are given in Figure 1. The time series length is T = 57. The time series is 

taken from the first quarter of year 1996 till the first quarter of year 2009.  All searches and 

forecasts are made using econometrical software EViews 6.0. 
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Figure 1 Latvian GDP (Lats) 1995Q1-2009Q1 

 

 

2 Analysis description 

 

2.1.  The analysis of criteria 

 

At the first stage of choosing the best model, 3 criteria are analyzed: Akaike info, Schwarz and 

Hannan-Quinn. The best model has minimal values. R-squared statistic is also present. At this stage 

models with best criteria are taken. ARMA Analysis is done in EViews program language and 

statistical criteria represent the result of the program (Fig.2). 

 

 
Figure 1 ARMA Analysis in EViews 6.0 

 

The R-squared ( ) statistic measures the success of the regression in predicting the values of the 

dependent variable within the sample. In standard settings, may be interpreted as the fraction of 

the variance of the dependent variable explained by the independent variables. The statistic will 

equal one if the regression fits perfectly, and zero if it fits no better than the simple mean of the 

dependent variable. It can be negative for a number of reasons. For example, if the regression does 

not have an intercept or constant, if the regression contains coefficient restrictions, or if the 

estimation method is two-stage least squares or ARCH. 

The Akaike Information Criterion (AIC) is computed as:   where  is the log 

likelihood. The AIC is often used in model selection for non-nested alternatives-smaller values of 
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the AIC are preferred. For example, you can choose the length of a lag distribution by choosing the 

specification with the lowest value of the AIC.  

The Schwarz Criterion (SC) is an alternative to the AIC that imposes a larger penalty for additional 

coefficients:     

 

 

2.2.  Residual tests 

 

The second stage is represented by Residual tests: Serial Correlation LM test, Histogram – 

Normality test, Hetereskedasticity ARCH test and Correlogram Square Residual test.  Models have 

passed the test if P Value is higher than 0,1. 

Serial Correlation LM test is an alternative to the Q-statistics for testing serial correlation. The test 

belongs to the class of asymptotic (large sample) tests known as Lagrange multiplier (LM) tests  

Serial Correlation LM test has the higher importance because on this step we are concerning with 

the possibility that our errors exhibit autocorrelation. LM test check for higher order ARMA errors 

and is applicable whether or not there are lagged dependent variables.  

The null hypothesis of the LM test is that there is no serial correlation up to lag order , where is 

a pre-specified integer. The local alternative is ARMA( ) errors, where the number of lag terms 

=max( ). Note that this alternative includes both AR( ) and MA( ) error processes, so that the 

test may have power against a variety of alternative autocorrelation structures.  

The test tatistic is computed by an auxiliary regression as follows. First, suppose you have 

estimated the regression;  

  
where are the estimated coefficients and are the errors. The test statistic for lag order is based 

on the auxiliary regression for the residuals :  
 

. 
 

Histogram and normality tests are displays a histogram and descriptive statistics of the residuals, 

including the Jarque-Bera statistic for testing normality. If the residuals are normally distributed, the 

histogram should be bell-shaped and the Jarque-Bera statistic should not be significant. The Jarque-

Bera statistic has a distribution with two degrees of freedom under the null hypothesis of 

normally distributed errors. [2] 

The ARCH test is a Lagrange multiplier (LM) test for autoregressive conditional heteroskedasticity 

(ARCH) in the residuals. This particular heteroskedasticity specification was motivated by the 

observation that in many financial time series, the magnitude of residuals appeared to be related to 

the magnitude of recent residuals. ARCH in itself does not invalidate standard LS inference. 

However, ignoring ARCH effects may result in loss of efficiency. 

The ARCH LM test statistic is computed from an auxiliary test regression. To test the null 

hypothesis that there is no ARCH up to order in the residuals, we run the regression:  
 

, 
 

where  is the residual. This is a regression of the squared residuals on a constant and lagged 

squared residuals up to order . The F-statistic is an omitted variable test for the joint significance 
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of all lagged squared residuals. The Obs*R-squared statistic is Engle's LM test statistic, computed 

as the number of observations times the from the test regression. The exact finite sample 

distribution of the F-statistic under is not known, but the LM test statistic is asymptotically 

distributed as a under quite general conditions.  

Correlogram of squared residuals test displays the autocorrelations and partial autocorrelations of 

the squared residuals up to any specified number of lags and computes the Ljung-Box Q-statistics 

for the corresponding lags. The correlograms of the squared residuals can be used to check 

autoregressive conditional heteroskedasticity (ARCH) in the residuals.  

If there is no ARCH in the residuals, the autocorrelations and partial autocorrelations should be zero 

at all lags and the Q-statistics should not be significant inclusion of ARMA terms. [2] 

 

 

2.3. Out-Of-Samle Forecasting 

 

The final evaluation test is “Out-Of-Sample Forecasting”. At this stage forecasts are compared to 

real data that we have for the period of the last 3 quarters of 2009.  

 

 

3. Latvian GDP in levels 

 

The analyzed series consist of seasonally unadjusted Latvian quarterly GDP in levels for the period 

of 1995Q1 – 2009Q1. It is represented in Figure 1. Constructing a model for the logs is more 

advantageous because the changes in the log series display a more stable variance than the changes 

in the original series. Time series in logs are shown in Figure 3. 

 

 
Figure 2 Latvian GDP in logs 
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Table 1 

The analysis of criteria (Levels) 

 
 

Best models: Nr. 5,7,8,12,13,14. Other models are excluded from further evaluation process. The 

residual test results are given in Table 2. Models Nr.13 and Nr.14 have undergone all tests. 

Residuals graph of Model Nr. 13 is given in Figure 4.  

 

Table 2 

Residual Test (Levels) 

 
 

 
Figure 3 Residuals graph for Model Nr.13 

 

The worst model residuals are given in Figure 5 for comparison. 
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Figure 4 Residuals graph for Model Nr.9 

 

“Out-Of-Sample Forecasting” test (Table 3) shows that the most real forecasts are gained from 

models Nr.12: AR(1) SAR(4) MA(4). Absolute difference (0.037) is minimal in this case. The best 

model has passed all Residual tests except Normality. The second and the third results are shown by 

models Nr. 7 and Nr.13., which have passed almost all residual tests except Nr.7., which also did 

not pass the Normality test. 

Table 3 

Out-Of-Sample Forecasting (Levels) 

 
LATVIAN GDP IN PERCENTAGE GROWTH 

 

All evaluations are made with Latvian GDP. The differences and the log difference of time series 

are shown in Figure 6. The log difference displays a more stable variance than the changes in the 

original series. 
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Figure 5  Time series in differences and in log differences 

 

Table 4 

The analysis of criteria (Difference) 

 
 

Models with the best criteria: Nr. 7, 8, 11, 12, 13, 14. Other models are excluded from further 

evaluation process. 

 

Table 5 

Residual Test (Difference) 

 
 

Models Nr. 8, 13, 14 have completed all tests. Model Nr. 12 also has good statistic.  “Out-Of-

Sample” forecasting test (Table 6) shows that the most real forecasts are gained from models Nr.11: 

AR(2) SAR(4). Absolute difference (0.037) is minimal in this case. This model did not complete 

the histogram test, but passed all other residual tests. The second result belongs to model Nr.7, 

which has the same problem with Normality test. Third result is shown by model Nr.14 – this model 

passed all residual tests. 
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Table 6 

Out-Of-Sample Forecasting (Difference) 

 
 

 

 

4 The search alorithm 

 

The search algorithm is shown in Figure 7. Step-by-step description looks as follows: 

Input data: GDP Time series 

1. Construction of ARMA models in levels and in differences separately. Starting from this point 

the model is divided in two branches and the subsequent steps are carried out in parallel for levels 

and for differences. 

2. ARMA Analysis. 

3. Performing Residual tests. 

4. If during residual tests probability value is less than 10%, the model is excluded from further 

evaluation. This is not a reliable model. 

5. If P Value is higher than 10%, the forecast for specified periods of time is performed. 

6. Comparing forecast data with real data. Making an evaluation. 

7. The analysis of the results. Two branches of models come back to one point. 

Output data: Best model for the GDP Forecasts. 

 

Conclusion 

 

In the given paper the author described search algorithm of optimal time series. With a help of 

statistical modelling the econometric analysis of Latvian GDP is done. Different cases of 

constructing model are made in Latvian lats (in levels) and in percentage growth (in difference). 

 Comparison of 1 and 2 cases shows that case in levels and in differences gave approximately 

the same result – 3.7% deviation from real data in absolute value for forecasts for 3 steps in future. 

It seems that it is does not matter which way to use. But this is surely not the right path. It is very 

important to analyze all the results and understand how they are calculated and evaluated. If a 

model gives the best forecast for one, two or three steps separately – it is does not mean that this 

model will be best in other cases. Figure 7 shows the algorithm of searching for optimal forecasting 

model. 
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Figure 6 The search algorithm 
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Abstract. The zero coupon yield curve is one of the most fundamental tools in finance and is 

essential in the pricing of various fixed-income securities. Zero coupon rates are not observable 

in the market for a range of maturities. Therefore, an estimation methodology is required to 

derive the zero coupon yield curves from observable data. If we deal with approximations of 

empirical data to create yield curves it is necessary to choose suitable mathematical functions. 

We use parametric model of Nelson and Siegel. The current mathematical apparatus employed 

for this kind of approximation is outlined. In order to find parameters of the model we employ 

the least squares minimization of computed and observed prices. This theoretical background is 

applied to an estimation of the zero-coupon yield curve derived from the Czech coupon bond 

market. On an initial test data sample we have not faced any problems, reported elsewhere, of 

not having found the global optimum or having found multiple local minima. 

 

Keywords. Yield curve estimation, Nelson-Siegel model, nonlinear least squares methods. 
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1 Introduction 

 

The term structure of interest rates is defined as the relationship between the yields of default-free 
pure discount (zero-coupon) bonds and their time to maturity. It provides a basis for pricing fixed-
income securities and interest rate derivatives, as well as other capital assets. 

Yield curve estimation plays a central role in pricing fixed-income derivatives, risk management 
and for national central banks. Since the yield curve cannot be directly observed, and there are not 
enough zero coupon bonds existing, it has to be derived from observed market prices of coupon 
bearing bonds. 
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The first class are parametric models. This class of function-based models includes the model 
proposed by Nelson and Siegel (1987) and its extension by Svensson (1994). 

The second class of term-structure estimation employs a B-spline basis for the space of cubic 
splines to fit observed coupon-bond prices. As a consequence, we call these spline-based models. 
This approach includes a penalty in the generalized least-squares objective function.  

Bolder and Gusba (2002), Marciniak(2006), Lin (2002)  provide an extensive review and 
comparison of a number of estimation algorithms. 

As to the Czech coupon bond market, the function-based construction of yield curve has not yet 
been satisfactorily explored. Construction of yield curves by the Svensson method is dealt with in 
Slavík (2001), Radova, Málek and Štěrba (2007) and Kladivko(2009). 
 
The model of Nelson and Siegel (1987) and its extension by Svensson (1994) are used by central banks and 

other market participants as a model for the term structure of interest rates (Table 1). 

 

Central bank Model 

Belgium Svensson/Nelson–Siegel 
Canada Exponential spline 
Finland Nelson–Siegel 
France Svensson/Nelson–Siegel 
Germany Svensson 
Italy Nelson–Siegel 
Japan Smoothing splines 
Norway Svensson 
Spain Svensson 
Sweden Smoothing splines/Svensson 
Switzerland Svensson 
UK VRP 
USA Smoothing splines 

 
Table 1. Estimation of the term structure of interest rates by different central banks. 

Source: BIS (2005) 

In Section 2 we repeat three equivalent descriptions of the term structure of interest rates, namely, 
the discount function d, the spot yield curve z and forward yield curve f.  In Section 3 we define the 
Nelson-Siegel model and propose an iterative method to solve arising nonlinear least squares 
problem. The minimization problem is stated in terms of observed and computed prices rather than 
in observed and computed yields to maturity (YTM’s). In Section 4 the data sample from the Czech 
coupon bond market is described. In Section 5 numerical experiments on these data are performed. 
Problem of finding global optimum is explored. 
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2 Term structure 
 

The spot interest rate z(t,T) of a given maturity T is defined as the yield on a pure discount bond 
of that maturity. The spot rates are the discount rates determining the present value of a unit 
payment at a given time in the future. Spot rates considered as a function of maturity are referred to 
as the term structure of interest rates. 
 
Each coupon bond can be considered as a package of discount bonds, namely one for each of the 
coupon payments and one for the principal payment. The price of such component discount bonds is 
equal to the amount of the payment discounted by the spot rate of the maturity corresponding to this 
payment. The price of the coupon bond is then the sum of the prices (discount function) d(t,T)  of 
these component discount bonds. 
 
The implications of the current spot rates for future rates can be described in terms of the forward 
rates f(t,T). The forward rates are one-period future reinvestment rates, implied by the current term 
structure of spot rates. 
 
There are three equivalent descriptions of the term structure of interest rates the discount function d, 
the spot yield curve z and forward yield curve f. We use tTm −=  to denote the time to maturity. 
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3 The Nelson –Siegel model 
 
We do not actually observe zero-coupon rates, forward rates, or the discount function.  We observe 
the set of coupon bond prices that are traded in the bond market at a given point in time. We 
minimize the weighted sum of the squared deviations of the fitted prices from the quoted prices. 
 

Nelson-Siegel (1985) suggested forward curve to be estimated as: 

 τβτββ
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The model has interesting economic interpretation of parameters and good asymptotical 
characteristics (Seppälä and Viertiö, 1996).  
• 0)(lim β=

∞→

mf
m

,        10
0

)(lim ββ +=

→

mf
m

, 

• The value of parameter ,00 >β  represents the asymptote of zero coupon yield curve function, 



 

 

 

Aplimat – Journal of Applied Mathematics 

 

  volume 4 (2011), number3 
 

 

40 

• The asymptote of forward curve as remained maturity approaches to infinity and can be 
interpreted as long term interest rate, 

• The sum of parameters 10 ββ +  represent initial value of forward curve 10)0( ββ +=f , which 

can be interpreted as instantaneous spot interest rate,  thus we require 0
10
>+ ββ . 

• The value of parameter 1β  represents the deviation of the function values from the asymptote 
and can intuitively be explained as the curvature of the function or as the difference between 
long term and short term forward interest rates, 

  
Using (1) we obtain from Equation (2) the zero coupon rate z and the discount function d as 
follows: 
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We define: 

 

i
P  - theoretical price of i-th bond, iP  - observed price of i-th bond, 

il  number of the payments of the i-th bond  

ij
t  - the time when the j-th payment of the i-th bond occurs;  ijiij tTm −=  

ij
c - the j-th payment of the i-th bond.  

 

 
Let Τ

= ),,,(
210
τβββθ . The theoretical price 

i
P  of bond number i is given by the sum of the 

discounted values of its cash flows, which using (4) is  
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The final step is to actually estimate the parameters of the Nelson-Siegel model. A natural 

requirement is to find these parameters such that the theoretical prices 
i
P  are as close as possible to 

the observed prices iP . Thus, in the sense of the least squares method we want to find a set of 

parameters τβββ ,,, 210  that minimizes the function H(P) given as, 
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2)(:)( ,     where iw  is weight of the i-th bond. (6) 
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Our choice for the weights was the reciprocal of the modified duration. 
We need to estimate four parameters: τβββ ,,, 210 . For N observed prices with different maturities 

NTT �,1 , we have N equations.  

There is a natural strategy to obtain parameters for this model: fix parameter τ , and then estimate 
the 210 ,, βββ  values with least squares method. The model’s parameters can change over time. We 

define Τ
= ),,(

210
βββθ
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We let T
NPPP )](
~

),(
~
[)(

~
1 τττ

θθθ �=  be a vector of theoretical prices for the set of N bond 

observations. Our objective, therefore, is to solve the minimization problem, 
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−− ,  where W is an NN ×  weighting matrix. (8) 

 

Equation (8) is a nonlinear least-squares problem. We apply the following nonlinear optimization 
algorithm (see e.g. Fischer, Nychka a Zervos, 1994):  
 

1. Employ the linear first-order Taylor series approximation: 
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2. Define: 
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3. Solve the linear least-squares approximation to the original problem given as: 
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−− , which is solved by, 

))()(())()(( 001001
τττττ

θθθθθ YWXXWX
TT −

=  
(11) 

4. Return to Step 1 with 10
: θθ =  until convergence is not achieved. 

 
Note that the above algorithm defined by Equations (9) to (11) is well suited for finding a local 
minimum of problem (8). The question whether this local minimum is also a global minimum will 
be addressed in Section 4 (cf. Gauthier and Simonato, 2009). We also did not impose any 
constraints on β ’s ( ,0

0
>β  0

10
>+ ββ ). It seems that if the problem is well posed then these 

constraints are automatically satisfied for ‘reasonable’ values of τ . 
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Alternatively, in place of using observed and theoretical prices in Equation (6) we can minimize the 
error of observed and theoretical yields to maturity (YTM’s) to find the Nelson-Siegel model 
parameters. 
 

 

4 Data from the Czech coupon bond market 

 
The Czech market is small and not as liquid as other developed markets. The original life of the 
Czech government bond is from 3 to 50 years. The government issued bonds with annual coupon 
payments. We consider here data for a selected day as given in Table 2. 
 
 

 Coupon Maturity Duration Price+AUV Years to  

maturity 

CZ0001000731 6,4 14.4.10 - 106,3589 0,139726 

CZ0001001242 2,55 18.10.10 0,64 101,8496 0,652055 

CZ0001002158 4,1 11.4.11 1,08 106,7261 1,131507 

CZ0001000764 6,55 5.10.11 1,53 110,7972 1,616438 

CZ0001001887 3,55 18.10.12 2,49 104,5524 2,654795 

CZ0001000814 3,7 16.6.13 3,03 105,9092 3,315068 

CZ0001001143 3,8 11.4.15 4,47 105,6644 5,134247 

CZ0001000749 6,95 26.1.16 4,95 119,4099 5,928767 

CZ0001001903 4 11.4.17 5,91 103,8389 7,136986 

CZ0001000822 4,6 18.8.18 6,8 105,7394 8,490411 

CZ0001002471 5 11.4.19 7 109,8111 9,136986 

CZ0001001317 3,75 12.9.20 8,31 94,89792 10,56164 

CZ0001001945 4,7 12.9.22 9,13 101,5281 12,56164 

CZ0001001796 4,2 4.12.36 14,95 87,945 26,8 

CZ0001002059 4,85 26.11.57 17,64 93,69903 47,79178 

Table 2. Government coupon bonds (22.2.2010). 

Source: www.patria.cz, personal computing 

We exclude two bonds with less than three months to maturity, since the yields on these securities 
often seem to behave oddly and one bond with more than forty-seven years to maturity, since price 
of bond will evidently include also another risk premium.  
 

 

5 Numerical experiments 

 

With the set of data described in Section 4 we performed a couple of numerical experiments. We 
used our own code written in FORTRAN. 
 
The following measures of goodness of fit are used: 
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In RMSE more weight is assigned to extraordinarily high error values. Large differences between 
RMSE and MAE indicate a large number of large errors of fit. HR is the number of theoretical bond 
prices, as a proportion of the overall number of bonds in the daily sample. 
 
Two measures of  maximum smoothness of a curve )(xgy =  between a and b are used.: 
 

 

• [ ] dxxgs

b

a

∫ +=
2

)´(1    “minimum length”  

• ( )∫=

b

a

dxxgz
2

´´       “smoothness“ 

(13) 

 
The smoothest possible function has the minimum z value.  Since a second derivative of a straight 
line equals zero, z is zero in that case and a straight line is perfectly smooth.  

 
In this case, the function g(x) stands for the discount, spot or forward rate curve. The two measures 
are once again very consistent. We have critiqued the results from some yield curve smoothing 
techniques because of the lack of smoothness in either discount function, spot rates or forward rates. 
In order to evaluate z over the full maturity spectrum of the rates curve, the rate segments must be at 
least twice differentiable at each point. 
 



 

 

 

Aplimat – Journal of Applied Mathematics 

 

  volume 4 (2011), number3 
 

 

44 

 
Figure 1. The L2-error, L2W-error (in prices) and L2-error (in yields, YTM = Yield To Maturity) for different values of 

parameter τ  

Our initial tests revealed that values of τ  could be restricted to 120 << τ  (cf. Gilli at al., 2010). For 
a fixed τ  we repeatedly solved minimization problem (8) to obtain 210 ,, βββ  applying algorithm 

defined by Equations (9) to (11).  For these solutions we compared the L2W-errors of observed and 
estimated prices (see Figure 1). The least L2W-error was obtained for value 7.6=τ . For this 
solution we computed the discount, forward and spot yield curves (Figure 2). In order to check the 
quality of our solution we compared the results with a time consuming global optimization strategy. 
This global strategy used coarse-fine bracketing of the four parameters requiring over one million 
attempts. In terms of the L2W-error the global strategy did not find a better solution for our test 
data.  
 

 
Figure 2. Computed discount function, spot and forward rates vs. time for the best solution in L2W-error 

 
Figure 3. Parameters 

210
,, βββ  and 

10
ββ +  computed for different values of τ  by algorithm (9)-(11). 



 

 

 

Aplimat – Journal of Applied Mathematics 
 

volume 4 (2011), number 3  
 

 

45 

 
Figure 4. Comparison of spot and forward curves for solutions with and without weights. 

The error in prices does not show erratic behavior in dependence on parameter τ  (Figure 1). The 
minimization algorithm (9) - (11) found always the global minimum. Its convergence was fast and 
robust. The results were compared with a global strategy where we used values of τβββ ,,, 210  

from given intervals. The initial coarse estimates were: 15.00
0
<< β , 3.015.0

1
<<− β , 

3.03.0
2
<<− β , 300 << τ . For given τβββ ,,, 210 ’s we recorded not only the L2W-error 

(objective function in Equation (6)) but also the other measures of error, namely RMSE2, MAE, L2. 
Moreover, the MAE- and L2-errors were used to measure the error of observed and computed 
YTM’s. Computed solutions of the minimization problem (6) with and without weights are given in 
Table 3. It is apparent that the obtained coefficients τβββ ,,, 210  do not differ much. The use of the 

reciprocal of the modified duration as a weight iw  in Equation (6) does not show much influence 

on the obtained solution. This is also demonstrated in Figure 4 where we can see the differences in 
solutions with and without weights only on the long end.  
 

τ
 0β  

1β  2β  10 ββ +  

Estimated 

Repo (%) Weight 

Measure of 

error Value 

6,70 0,04717 -0,04365 0,06925 0,00352 0,35236 1/MDur L2W  0,66485 

7,00 0,04568 -0,04175 0,07327 0,00393 0,39352 1 L2W=L2  1,52796 

Table 3. Characterization of the obtained solutions. 

The length and curvature of the two methods is compared in Table 4.  The different error values are 
compared in Table 5. The obtained values are again very similar. 
 

Length Smoothness 

Solution  Discount  Spot Forward Discount  Spot Forward 

L2=L2W 26.81211359 26.70010485 26.80026663 0.44603790 0.00536658 0.03474004 

L2W 26.81211632 26.70010765 26.80027282 0.45881991 0.00577223 0.03734770 

Table 4. Evaluation of the obtained solutions according to the length of the curves and smoothness. 



 

 

 

Aplimat – Journal of Applied Mathematics 

 

  volume 4 (2011), number3 
 

 

46 

 

Price YTM (%) 

Solution MAE
 

RMSE
2
 HR MAE L2 

L2=L2W 0.32041911 0.17958841 53.85 0.07316269 0.34828361 

L2W 0.32453623 0.17993799 53.85 0.07639381 0.35238783 

Table 5. Evaluation of the obtained solutions according to accuracy of price and YTM estimations. 

From our solutions we obtain estimates of the instantaneous forward rate curve from Czech 
government coupon bonds. We can understand this estimate as an approximation of market 
expectations regarding future short-term interest rates. We can see that the starting value of 
estimated forward rate (column 10 ββ + in Table 3) does not fit quite well the actual repo rate (the 

repo rate set by ČNB was 1 % on 22.2.2010). The estimated value is between 0.35% and 0.48% - it 
is below the actual repo rate. The estimates do provide picture of evolution of the forward curve. 
This is low level of expected repo rate in near future. The figures also show the gradually increasing 
forward curve. This corresponds to expectation of gradual increase of repo rate, which was 
consistent with market expectation as measured by CNB. Despite these expectations the repo rate 
dropped to value of 0,75% on 7.5.2010. 
 
 
6 Conclusions 
 
Results presented in this paper were based on interest rate estimates from the Czech coupon bond 
market, which is characterized by a relatively low number of bonds, by moderate liquidity and 
periodically reduced efficiency. We explored Nelson-Siegel model to create yield curves. This 
approach produced a reasonably looking zero-coupon yield curve. After some numerical 
experimentations we found the Nelson-Siegel model to be a stable and potentially useful for our 
data sample. We have not faced any problems, reported elsewhere, of not having found the global 
optimum or having found multiple local minima. This will be clarified in our subsequent work 
when compared to other methods and on larger set of data than just one day. 
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INTEREST   RATES   ON  RETAIL   HOUSE   PURCHASE   LOANS: 

IS  SLOVAKIA   AN   EXEPTION   IN  THE  EUROZONE? 

 

KLACSO Ján, (SK)  

 

 
Abstract. After the European Central Bank lowered its base rate and adopted several non-

standard measures under the pressure of the financial crisis, interbank interest rates and 

consequently client interest rates in the Eurozone dropped to their historical minimum. Interest 

rates on retail house purchase loans in Slovakia, however, remained relatively high compared to 

other member states. Based on cointegration techniques and error-correction equations, it is 

shown in the paper that it is the development of the government bond yields, which can be 

related to the development of the interest rates on retail hose purchase loans rather than the 

interbank market interest rates and also the liquidity margin affects partially the level of these 

interest rates in Slovakia. It means that the higher value of the interest rates on client loans in 

Slovakia is a result of historical differences in setting these interest rates between Slovakia and 

other member states rather than of differences in the reaction to the developments in the first 

half of 2009. 

 

Key words. Interest rate pass-through, cointegration, error-correction  

 

Mathematics Subject Classification:  91G70 

 

 

1 Introduction 

 

Under the pressure of the turmoil on the financial markets and the global economic downturn, 

the European Central Bank decided to gradually decrease its base rate in 2008 and 2009 from more 

than 3 % to 1 % and to adopt several non-standard measures to lower the impact of the crisis on the 

banking sector and the real economy. As a consequence, the European interbank market interest 

rates dropped to their historical minimum. Interest rates on client loans and deposits in the member 

states of the Eurozone gradually followed the movements of the interbank interest rates. This 

development is also observable in case of Slovakia. However, for some type of loans, especially for 

retail house purchase loans, interest rates in Slovakia remained among the highest within the 

Eurozone, as their decrease was not as significant as in other member states. It is therefore a 

question, if the movements of these interest rates in Slovakia can be explained by the movements of 

the interbank interest rates and what other determinants lay behind the development of the interest 
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rates on retail house purchase loans. As house purchase loans with interest rate fixation 

of up to 1 year has the highest share in the total volume of retail house purchase loans, the interest 

rates on these loans are investigated in the paper. 

 

Chart 1 Development of interest rates on newly granted retail house purchase loans with  

interest rate fixation of up to 1 year in the Eurozone member states 
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- Data are in percentages 

- Source: www.ecb.int 

 

 

2 Finding for long-term relationship 

 

Based on economic theory, banks transmit the price of the funds they use to finance the loans to 

the interest rates on these loans. As it is interbank interest rates that determine primarily the price of 

funds, it is expected that mainly the value of these interest rates is reflected in the value of client 

interest rates. If banks really derive interest rates on retail house purchase loans from the level of 

interbank interest rates, and if there are no significant changes in the way of determining these 

interest rates, respectively market conditions are not subject to any significant changes, the 

existence of long-term relationship between the client interest rates and interbank interest rates can 

be expected. As all interbank interest rates and interest rates on newly granted retail house purchase 

loans are regarded as non-stationary time series of order 1 (so called I(1) processes) based on unit 

root tests (Table 1), the existence of long-term relationship was investigated using tests of 

cointegration. As ECB reduced its key interest rate and adopted the non-standard measures at the 

end of 2008 and during 2009, the existence of long-term relationship was tested first for the period 

2005-2008. 

After verifying the existence of long-term relationship between the client interest rates and the 

interbank interest rates ( 

Table 2), an EC (error correction) equation was estimated for client interest rates in the 

following form: 
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   (2.1) 

where 
t

IR  is the average interest rate on newly granted retail house purchase loans, 
t

IBR  is the 

respective interbank interest rate, α  is the speed of adjustment in case of a deviation from the long-

term relationship, 
0

β  is the estimated long-term spread between the client interest rate and the 

interbank interest rate, 
1

β  determines up to what extend are changes in the interbank interest rate 

transmitted into the client interest rate in the long term and 
t

ε  are residuals. For all the above 

described coefficients a negative value is expected. 

As the existence of cointegrating relationship cannot be rejected for any of the interbank interest 

rates and the best fit is for the error-correction equations in case of interbank rates of up to 6, 9 and 

12 months (Table 3), only these interbank rates were used for further estimates. 

As the existence of long-term relationship cannot be rejected for the period 2005-2008, the next 

question is whether this long-term relationship exists also for the prolonged period from 2005 to the 

end of the first half of 2010. As Slovak interbank interest rates (BRIBOR) existed only up to the 

end of 2008 (as Slovakia joined the Eurozone as of 1
st
 January 2009), the time series of BRIBOR 

interest rates were prolonged using EURIBOR interbank interest rates. Tests of cointegration 

rejected the hypothesis of the existence of long-term relationship between the prolonged time series 

( 

Table 2) and also the estimated equation (2.1) had poor performance for this prolonged period ( 

Table 4). It means that since January 2009 the relationship between the rates and/or the market 

conditions have substantially changed. Potential reasons for the elimination of the long-term 

relationship include: 

- Euro interbank rates extending the time series from January 2009 do not reflect the credit 

risk, which was specific for Slovakia and was reflected in the BRIBOR interest rates (i.e. by how 

much, compared to banks of other member states, do Slovak banks pay more on the money market 

if they wish to borrow funds); 

- Differences between short-term and long-term interbank rates have been substantially 

changed since the beginning of 2009. That could have become evident through an increase in the 

liquidity margin included in the client interest rate (expressing the risk associated with the fact that 

despite shorter fixation of the interest rate, the maturity of house purchase loans is usually relatively 

long and the bank has to use long-term funds to cover the loans and/or create a buffer to secure the 

availability of funds in the future, as their price can be higher than the present price). The liquidity 

margin was not reflected in the estimated EC equations, however, up to the end of 2008 spreads 

between short-term and long-term rates were relatively negligible compared to values from 2009. 

- After euro introduction banks lost certain sources of income (EUR/SKK foreign exchange 

operations, sterilizing operations with the NBS, etc.), which could be replaced by increasing 

margins on products with relatively low competitive pressures (e.g. retail house purchase loans) 

compared to other products (e.g. municipal loans or corporate loans). Moreover, from 2009, 

household credit risk might have been perceived more sensitively owing to the adverse 

developments in the global (and consequently local) economy, which became evident in increased 

uncertainty regarding future developments on the labour market.  

 

 

3 Inclusion of government bond yields and liquidity margin 
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As the available interbank interest rates from the beginning of 2009 do not reflect the credit risk 

specific for Slovakia (so called sovereign credit risk), time series of interbank interest rates were 

approximated by time series of the yields on 2 year Slovak government bonds. Tests of 

cointegration didn’t reject the existence of long-term relationship for the prolonged period ( 

Table 2), therefore an EC equation was estimated for the client interest rates of the form: 

( ) ( )
t

p

i

itiitittt
GBYIRGBYIRIR εδγγββα +Δ+Δ++++=Δ ∑

=

−−−−

1

01101
   (3.1) 

where 
t

GBY  is the yield on 2 year government bonds. The explanation of the coefficients is as 

described above. Based on the estimation of equation (3.1) and the tests of cointegration it can be 

concluded that the yield on 2 year Slovak government bonds is a good approximation of the 

BRIBOR interbank interest rates for the period 2005-2008 and as long-term relationship cannot be 

rejected for the prolonged period it seems that Slovak banks reflect this yields in client interest rates 

rather than interbank interest rates ( 

Table 5). 
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- Client interest rates are interest rates on newly 

granted retail house purchase loans with fixation 

of up to 1 year 
 

- The spread is calculated as the difference 

between the short and long-term discount rate 

Values are in percentage points 

 

To test whether the increased steepness of the yield curve affected the value of the client interest 

rates the liquidity margin approximated by the difference between 10 years and 5 years interbank 

interest rate was included into the EC equation after tests didn’t reject the existence of long term 

relationship between the client interest rates, the government bond yields and the liquidity margin ( 

Table 2). The estimated EC equation has the form: 
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where 
t

LM  is the liquidity margin. A negative value is expected for the coefficient
2

β . Estimation 

of equation (3.2) showed that the spread between the long-term and short-term interbank interest 

rates is reflected in the client interest rates, however to a much lover extent than the country specific 

credit risk included in the government bond yields. 

 

 

4 Testing for structural breaks 

 

The last question is if there was a structural change in setting up the client interest rates by the 

banks after joining the Eurozone and after the effects of the financial crisis and the global economic 

recession became more pronounced in 2009. To test the stability of the estimated coefficients of the 

equation (3.2) Chow breakpoint test was used for each month of the period December 2008 – May 

2010. Based on the breakpoint test, the null hypothesis of no structural brakes in the first months of 

2009 cannot be rejected ( 

Table 7). It means that the changing market conditions in 2009 didn’t cause any structural 

changes in the way banks set up their client interest rates. 

 

Chart 4 Interest rates on newly granted retail house purchase loans  

with fixation of up to 1 year – real values and estimation 

4.0

4.5

5.0

5.5

6.0

6.5

7.0

V
I.0
5

X
II.
05

V
I.0
6

X
II.
06

V
I.0
7

X
II.
07

V
I.0
8

X
II.
08

V
I.0
9

X
II.
09

V
I.1
0

Client interest rates

Client interest rates - estimated values

 
 

 

5 Conclusion 

 

Until the end of 2008 it was hard to decide whether it is the yield on Slovak government bonds 

or the interbank market interest rates that is reflected in the client interest rates, as their 

development was strongly correlated. However, based on cointegration tests and the estimated EC 

equations it can be concluded, that at least from the beginning of 2009 it is the 2 year government 

bond yield which determinates the value of the interest rates on house purchase loans. It means that 

banks reflect also the country specific risk related to Slovakia when deciding the value of the loan 
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interest rate. Estimations showed that the spread between the long-term and short-term interbank 

rates is also included in the value of the client interest rates in the form of liquidity margin. As there 

is no evidence of any structural change in the way Slovak banks determine the client interest rates 

during the first half of 2010, it can be concluded that the difference in the client interest rates 

between Slovakia and other member states can be related to historical differences in setting these 

interest rates rather than to different reactions to changes at the end of 2008 and during the first half 

of 2009. 
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Appendix 
 

Table 1 Unit root tests 

ADF test Philips – Perron test 

  Level 1st differences Level 1st differences 

Client rates 0.608 0.000 0.094 0.000 

Interbank rates  

1M 0.815 0.001 0.842 0.000 

2M 0.643 0.020 0.834 0.015 

3M 0.598 0.026 0.818 0.026 

6M 0.478 0.048 0.788 0.033 

9M 0.455 0.048 0.773 0.034 

12M 0.455 0.048 0.773 0.034 

2Y 0.793 0.000 0.827 0.000 

3Y 0.751 0.000 0.826 0.000 

4Y 0.738 0.000 0.813 0.000 

5Y 0.729 0.000 0.831 0.000 

6Y 0.672 0.000 0.792 0.000 

7Y 0.659 0.000 0.766 0.000 

8Y 0.644 0.000 0.748 0.000 

9Y 0.631 0.000 0.734 0.000 

10Y 0.743 0.000 0.833 0.000 

2Y GBY 0.897 0.000 0.818 0.000 

Liquidity margin 0.766 0.000 0.624 0.000 

- All unit root tests are calculated including an intercept 
 

Table 2 Tests of cointegration 

Period 2005 - 2008 Period 2005 - 2010H1 

Trace test ME  test Trace test ME test 
Cointegrating 

relationship with 
0 CE 1CE 0 CE 1 CE 0 CE 1CE 0 CE 1 CE 

Interbank rates     

1M 0.043 0.323 0.046 0.323 - - - - 

2M 0.011 0.123 0.025 0.123 - - - - 

3M 0.002 0.041 0.012 0.041 - - - - 

6M 0.000 0.062 0.000 0.062 0.167 0.731 0.099 0.731 

9M 0.000 0.088 0.000 0.088 0.285 0.666 0.217 0.666 

12M 0.000 0.125 0.000 0.125 0.440 0.641 0.391 0.641 

2Y 0.001 0.161 0.001 0.161 - - - - 

3Y 0.003 0.218 0.003 0.218 - - - - 

4Y 0.004 0.220 0.004 0.220 - - - - 

5Y 0.008 0.259 0.008 0.259 - - - - 

6Y 0.008 0.258 0.009 0.258 - - - - 

7Y 0.009 0.252 0.011 0.252 - - - - 

8Y 0.015 0.273 0.017 0.273 - - - - 

9Y 0.030 0.311 0.033 0.311 - - - - 

10Y 0.058 0.344 0.061 0.344 - - - - 

2Y GBY 0.001 0.130 0.004 0.130 0.000 0.557 0.000 0.557 

2Y GBY and LM - - - - 0.001 0.319 0.000 0.294 

- All tests of cointegration are calculated including an intercept in CE and VAR 
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Table 3 Estimated coefficients of equation (2.1) for period 2005- 2008 

Interbank rates: β0 β1 α # lags aR2 

1M -3.238 -0.646 -0.271 1 30.75% 

2M -3.177 -0.649 -0.272 1 34.38% 

3M -2.795 -0.735 -0.262 1 41.34% 

6M -1.982 -0.910 -0.243 1 55.49% 

9M -1.938 -0.911 -0.245 1 57.44% 

12M -2.007 -0.888 -0.244 1 57.99% 

2Y -2.307 -0.827 -0.223 1 47.47% 

3Y -1.583 -1.000 -0.192 1 46.68% 

4Y -1.147 -1.102 -0.185 1 46.35% 

5Y -0.674 -1.209 -0.176 1 45.03% 

6Y -0.269 -1.297 -0.175 1 44.83% 

7Y 0.054 -1.365 -0.176 1 44.56% 

8Y 0.480 -1.451 -0.173 1 43.50% 

9Y 0.921 -1.538 -0.168 1 41.40% 

10Y 1.373 -1.627 -0.159 1 39.24% 
 

Table 4 Estimated coefficients of equation (2.1) for period 2005- 2010H1 

Interbank rates: β0 β1 α # lags aR2 

6M  -4.730 -0.298 -0.133 1 27.05% 

9M  -4.602 -0.331 -0.149 1 28.48% 

12M  -4.514 -0.353 -0.148 1 30.51% 
 

Table 5 Estimated coefficients of equation (3.1) 

Period: β0 β1 α # lags aR2 

2005 – 2008 -1.784 -1.034 -0.172 1 46.43% 

2005 – 2010H1 -3.080 -0.738 -0.221 1 46.42% 

 

Table 6 Estimated coefficients of equation (3.2) 

 Period: β0 β1 β2 α # lags aR2 

2005 – 2010H1 -3.139 -0.706 -0.003 -0.243 1 49.99% 
 

Table 7 Chow breakpoint test 

  2008M12 2009M01 2009M02 2009M03 2009M04 2009M05 

F statistics 

(p-value) 0.8266 0.8413 0.5737 0.5572 0.6266 0.7608 

Log 

likelihood 

ratio (p-v.) 
0.7749 0.793 0.4858 0.4683 0.5431 0.6959 

Wald 

statistics      

(p v.) 
0.8291 0.8439 0.5691 0.5519 0.6241 0.7623 
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Abstract: Earned Value Analysis (EVA) is a method of measuring the project performance. 

Although the concept exists since the nineteen’s century and it has been in use since the 1960s, 

only now it is gaining considerable popularity. Those in favour will base their arguments in the 

cost savings from the project and the improved communication, analysis and control that come 

from its implementation. Those who have a different opinion will cite the limited benefit from 

its use and the effort to make it work. There is no doubt that these different opinions come from 

different experiences. Nevertheless, everybody agrees that EVA is a powerful tool if applied 

correctly. The aim of this work is to implement this tool to a project in concrete and to evaluate 

the use of EVA as a complementary tool of the system currently used – SAPE, in determining 

and controlling costs associated with the project, at every moment of the project. This allows to 

evaluate the possible deviations and to enable timely corrections.  

 

Keywords:  Integrated Management Systems, Project Control, ERP, SAPE, Information 

Systems, Earned Value Analysis. 

 
 
1 Introduction 

 

Nowadays, consumers are highly exigent. Therefore, companies make great efforts to meet these 
requirements trying to offer a consistently high level of service, regardless of the area where they 
operate. To accomplish this objective companies must have the internal capabilities to reach not 
only the purposes that their clients require but also an efficient level of operation, based on reduced 
costs. 
To achieve the goals mentioned above, the consulting company IA1 is going to implement EVA 
(Earned Value Analysis) tool as a complement to the SAPE2 Software, already in use in the 
company. Such integration would increase the strengths of both tools in the company. This enables 

                                                 
1 The name of the company is not the real one, for confidentiality reasons.  
2 “Systems, Applications and Products in Data Processing" 
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IA to get a much more rigid control of its projects. In addition, the project manager will have better 
information to make his decisions. Consequently, as he will be better informed about the project 
development, failures can be detected earlier. 
 
Considering this, this paper aims:  

1) to get an overall view of the SAPE software, highlighting its main deficiencies,  
2) to reach a close analysis to the EVA tool,  
3) to propose the application of this model to a case study and  
4) to make an analysis of the results and draw the inherent conclusions. 

 
 
2 SAPE Software  

 
Considering the competitive markets and global economy, companies feel the necessity to develop 
some vital characteristics in order to survive. For instance, the ability to obtain crucial information 
and the way to manage it are essential factors for the company. Enterprise Resource Planning (ERP) 
appeared in order to contribute to that.  
 SAPE main objective is to permit to companies to plan and to control their necessities 
through this kind of information systems. While in its early stages, ERP was used as a tool to 
manage operations, planning and controlling resources necessities. ERP was used to calculate the 
quantity of resources needed and the correct time to do so. It was used to evaluate the implications 
of the companies’ future demand on the financial areas, as well as to calculate the resources` 
necessities. Nowadays it is used as a corporative system that supports and assists every business 
area [1]. ERP is used in a larger way to cover all functional sectors of the company. Therefore, it is 
now considered a “global plan” and became a software that allows the existence of a unified 
information system and that connects all business areas. It has become a very agile application that 
improves the whole Business Process [2]. 
 SAPE or SAP ERP is the main product of SAP AG, a German company and the leader of 
the corporative software market. Being a type of ERP, SAPE can be now defined as an integrated 
management transactional system that connects all sectors of a company [3]. SAPE is a very useful 
tool mostly because it allows a very high integration in the company. Several software can be 
removed, once SAPE causes a reduction of data inconsistencies. However, this integration can be 
seen as a disadvantage because it only considers one user to have an effect on all departments. 
Another disadvantage of this system is that it can be seen as an account tool and, therefore, the user 
of SAPE must have some knowledge about taxes and tributary legislation, otherwise he will not be 
prone to use this tool correctly. Besides, SAPE is seen as a way to reduce costs and this might be 
seen as a way to sack people. Finally, it is important to understand that most of SAPE disadvantages 
are psychological, meaning that a strong motivation campaign to the advantages of this tool might 
be necessary to motivate workers to believe in the system [4]. 
 
 
3 Earned Value Analysis 

 
EVA is a tool that controls and evaluates a project`s performance based on its costs, deadlines and 
progress. Its methodology consists in comparing what has been done or obtained (earned value) 
with what really has been done and what should have been done. EVA is a control tool that permits 
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to evaluate simultaneously and quantitatively the costs and delays in a specific time. It also makes a 
prediction on how much money will be spent at the end of the project. 
 EVA is a strong methodology due to three main aspects: it is a uniform unit of measure, it is 
consistent and it is a basis for cost performance analysis. Being a uniform unit of measure, it 
permits to combine and to compare the progress of completely different tasks. As far as being a 
consistent method, EVA allows that everybody inputs the information on how they are doing and 
realise if they are on schedule and the percentage of work done. Finally, EVA is a basis for cost 
performance analysis because it measures the quantity of work done in a consistent way, and 
compare unit costs, unit. In other words, it allows the comparison between physical progress of a 
project and its costs by using the same unit of measure [5]. 
 After the presentation of the conceptual fundaments that support EVA, it is necessary to 
define three main variables in order to successively implement this tool. The first is the Actual Cost 
of Work Performed (ACWP). This is the money that has been spent to complete a task or, if the task 
is not finished, the money that has been spent so far. The second variable is the Budgeted Cost of 
Work Performed (BCWP). For completed tasks, this is the budget in the original task plan, 
regardless of the money actually spent on completing it. For unfinished tasks, it is the task budget 
multiplied by the percentage of completion so far. This might be seen as the achieved progress 
because this is the earning value for the cost that a task was expected to incur. Finally, the third and 
last primarily variable is the Budgeted Cost of Work Scheduled (BCWS). This is the money that is 
expected to be spent on the work that is expected to be accomplished by now. This means that it 
doesn’t matter if the task is actually finished or on schedule. To do this, it is enough to look to the 
project plan and see what was planned to happen by now. For the project as a whole, these variables 
are the sum of all the ACWPs, BCWPs and BCWSs of all tasks. It is important to understand that 
these variables are functions of time. So, each time, EVA is used and these variables must be 
recalculated [6]. 
 
Considered the main variables for each task and for the project as a whole, earned value scores can 
be calculated. The first score is the Schedule Variance (SV): 
 

 SV = (BCWP – BCWS) / BCWS (1) 
 

The SV compares the achieved progress with the planned progress and divides it by the scheduled 
progress. This provides the percentage of deviation from what was planned.  
 
The next secondary variable is the Cost Variance (CV): 
 

 CV = (BCWP – ACWP) / BCWP (2) 
 

The CV compares the actual cost to the planned cost for the work actually performed and divides it 
by the planned cost to provide us with the percentage of deviation from plan. 
The Schedule Performance Index (SPI) is: 
 

 SPI = BCWP / BCWS (3) 
 

It is interesting to understand this variable meaning by using an example. If SPI = 0.9 this means 
that 90% of the time predicted in the schedule was actually converted into work. Consequently, 
there is a 10% loss of time and the work is behind the schedule. A SPI greater than 1 means that 
works are better than scheduled. 
 
In the same line, the Cost Performance Index (CPI) is: 
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 CPI = BCWP / ACWP (4) 
 

Presenting an example once again, if CPI = 0.9 it means that for every 1€ consumed, only 0,9€ are 
actually being converted into final product. Therefore, there is an overspending. A CPI greater than 
1 means a spending of less money than what was predicted. 
Now, for calculating the variables that are more meaningful and that permit more explicit results, 
let’s begin to consider the variable  Estimate at Completion (EAC): 
 

 EAC = ((BAC – BCWP) / CPI) + ACWP (5) 
 

The BAC, or Budget at Completion, is what is planned to spend at the end of the project. So, the 
EAC provides the work that has not been finished (BAC – BCWP), dividing it by the CPI and 
adding the ACWP, which is considered a sunk cost. 
Finally the Variation at Completion (VAC): 
 

 VAC = BAC – EAC (6) 
 

It is easy to understand that this variable will show if one is spending more or less money than 
expected and will quantify it [7]. 
 
Although EVA is a powerful tool, its usage is not consensual. A survey was made to 400 
professionals who worked in 180 projects and the results were that EVA was used by 41% of 
people but its value and popularity were very low. Trying to justify the low value proved by 
researchers, Thamhain [8] states that the little applicability, found as a result in the studies made, 
can be attributed to different barriers, either being internal or external.  
 
To Wideman [9], a project of great importance requires a unit of planning and control with 
professionals capable of collecting the information and making the analysis of added value, making 
its applicability justifiable.            
 
To Sparrow [10], the earned value analysis enables a supplementary value to the project because it 
offers a premature visibility of its results. So, it is possible to determine a tendency of costs and 
deadlines, while it is still possible to implement corrective actions. 
On the contrary, West and McElroy [11] agree that EVA is an adequate tool for the generation of 
reports of work done, and not a managerial tool, since the control in real time of the project, using 
all parameters of analysis becomes unviable.           
 
As can be seen, although it is consensual that EVA is a very powerful tool when applied correctly, 
even in the areas where it has been applied, it is still not very well defined [12].           
According to Lukas [13], the top ten reasons why EVA does not work are:  

a) no documented requirements,  
b) incomplete requirements,  
c) WBS not used or not accepted,  
d) WBS incomplete,  
e) plan not integrated,  
f) schedule and/or budget incorrect,  
g) change management not used or ineffective,  
h) cost collection system inadequate,  
i) incorrect progress and  
j) management influence and or control.  
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Lukas [13] states that EVA is the most effective technique for providing information on project 
performance. It communicates scope, schedule and cost status information to project stakeholders. 
Properly used, earned value is a flexible process that provides timely information on the project 
“health”.  Effective use of EVA concepts can provide a competitive advantage in successfully 
delivering projects. Lukas [13]  also mentions that if you have prepared your project plan properly, 
earned value analysis takes no additional effort to implement. The key is having complete 
requirements and a good project plan. 
 
 
4 Case Study 

 
Now, let’s see how EVA works in a real life project. This project is called MSRCPF (“Monitoring 
System Radiation Coils Pyrolysis Furnace”) and the objective is to implement an online monitoring 
system to the pyrolysis furnace. This will allow the detection of malfunctions and reduction of their 
consequences. This project also seeks to develop non destructive control techniques that will permit 
to determine the degradation state of these equipments. Such techniques will be applied during the 
programmed stops to avoid service failures that normally lead to production loss.  
 
The main results that this project intends to achieve are:  

a)
 

increasing from four to six years the life of the equipment,  
b)
 

getting a reduction by 25% of the opportunity and maintenance costs that come from un-
programmed stops,  
c)
 

getting a reduction by 29% of the opportunity costs that come from programmed stops, 
d)
 

getting a reduction of the systematic maintenance costs in 14%,  
e)
 

improving the availability of the equipment due to a reduction of the un-programmed 
stops and  
f)
 

getting a minimal energy consumption by doing a reduction in some operations. 
 
As it is, the programmed stops have a cost of 813.600€ per year. This corresponds to a profit 
reduction of 520.000€ per day (opportunity cost). Looking at the equipment immobilization periods, 
this means that there is a loss of 3.094.000€ per year. Concerning the un-programmed stops, they 
have an opportunity cost of 2.080.000€ per year. 
 After a brief description of the project and after exposing the reasons for doing it, EVA can be put 
into action. Let`s assume a check point three months after the project begun. According to what was 
initially planned, the status of the project should be as shown in table1. 
 

Tasks in Progress Predicted Completion 
1.A - Furnace Hardware Implementation Studies 100%

1.B - Acquiring Systems, Storage and Data Transfer Studies 25%

1.C - Coquefication Model Studies 50%

Table 1: Percentage of completion after 3 months of work - Tasks and predicted percentage 

 
Knowing this and knowing some internal information about the project, the amount that should 
have been spent on each task and consequently the amount in the project as a whole can be 
determined three months after it has started.  
The results are shown in table 2. 
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1.A Technical Personnel Worked 
Hours 

Cost per Hour 
Worked 

Total 

 Fernando Afonso 45 34,74 € 1.563,30 € 

 Carlos Jorge 30 25,13 € 753,90 € 

 José António 120 26,31 € 3.157,20 € 

 Rui Joăo 55 26,31 € 1.447,05 € 

   6.921,45 € 

     

 Sub-Contracted 

Technicians 
Worked Hours Cost per Hour Worked Total 

 José  Augusto 25 70,00 € 1.750,00 € 

Table 2: Task 1. A. Predicted Costs 

 
Task 1.A. will cost 8.671.45€. This task is finished so this is the amount of money that has to be 
spent on it after three months. Now let’s see what happens with task 1.B., see table 3. 
 

1.B Technical Personnel Worked 
Hours 

Cost per Hour 
Worked 

Total 

 Fernando Afonso 285 34,74 € 9.900,90 € 

 José António 212 26,31 € 5.577,72 € 

 Mário Gonçalves 212 19,71 € 4.178,52 € 

  19.657,14 € 

     

 Sub-Contracted Technicians Worked Hours Cost per Hour Worked Total 

 José  Augusto 40 70,00 € 2.800,00 € 

Table 3: Task 1.B. Predicted Costs 

 
In this case, although task 1.B. will cost 22.457,14€, only 25% is supposed to be completed. 
Therefore, it is supposed to have paid 5.614,29€ for this task so far. Finally, the status of the task 
1.C. is shown in table 4. 
 

1.C Technical Personnel Worked 
Hours 

Cost per Hour 
Worked 

Total 

 José António 145 26,31€ 3.814,95€ 

 Rui Joăo 355 26,31€ 9.340,05€ 

 Pedro Sousa 35 32,93€ 1.152,55€ 

 Luís Sousa 140 21,99€ 3.078,60€ 

 Celso Araújo 75 26,81€ 2.010,75€ 

 Nuno Batista 130 16,96€ 2.204,80€ 

 Manuel Soares 285 28,58€ 6.435,30€ 

 Sandra dos Santos 305 15,58€ 4.751,90€ 

  32.788,90€ 

     

 Technical Personnel Worked Hours Cost per Hour Worked Total 

 José Augusto 20 70,00 € 1.400,00€ 

Table 4: Task 1.C. Predicted Costs 
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Once again, when task 1.C. is completed, it is supposed to cost 34.188,90€ but now, three months 
after the beginning of the project, it has a 50% completion. So, the cost that now matters is 
17.094,45€. How much each task is supposed to cost? and which tasks are supposed to be “on-
going”? It is possible to determine the amount that should be spent: 31.380,19€. 
 
This amount is now exactly known. Unfortunately, things almost never go the way desired. Let`s 
see what happens if the real scenario is the following: 
• Task 1.A. was harder than it was initially thought to be and, to finish it on time, everybody had 

to work 5% more than expected. 
• Due to technical problems, task 1.B. had a one month delay and so, in this third month 

checkpoint, it still was not started. 
• Due to lack of equipment, task 1.C. was delayed by one week. 
 
Now let`s see how EVA takes into account this new information. Firstly, task 1.A. is on time but it 
costs more than the expected. Now it is necessary to spend 9.105,02€ to do the same job that it was 
thought to cost 8.671,45€. Secondly, task 1.B. has not begun. So although it was not spent the 
expected 5.614,29€, this is not good because the task is delayed and it will be probably necessary to 
spend more money later. Finally, Task 1.C. is 46% completed and it was spent 15.669,91€ on it so 
far. As can be seen, after three months of work, 24.774,94€ were spent while it was expected to 
have spent 31.380,19€. To some people this might look like good news. But let’s see what EVA 
configures about it. 
The first thing to do is to determine the main variables for each task that has already begun or 
should have begun (see table 5). 
 

ACWP 9.105,02 € 
1.A. 

BCWP 8.671,45 € 

 BCWS 8.671,45 € 

Table 5: Task 1.A. main variables 

 
Almost instinctively, ACWP (real cost) is determined and so is BCWS (predicted cost). The only 
tricky variable might be the BCWP. In this case, 1.A. is finished. So it does not matter if we have 
spent more or less than predicted or if we took more time or not to do it. When a task is completed, 
the BCWP is always equal to the BCWS. This shows that a good planning is absolutely imperative 
for the success of EVA. When a task is completed, it is possible to earn the value that it was initially 
established for that task. However, when a task is not finished this variable might cause some 
doubts. Basically, it is necessary to multiply the real percentage of completion of each task by the 
predicted costs of each one. In other words, it is necessary to determine how much the achieved 
work should have cost according to the first predictions. Now let`s analyze the development of the 
task 1.B. (table 6). 
 

ACWP 0,00 € 
1.B. 

BCWP 0,00 € 

 BCWS 5.614,29 € 

Table 6: Task 1.B. main variables 

Once again, this comes almost naturally. ACWP and BCWP are obviously zero because the task has 
not started so there is no “work performed”. Additionally, BCWS is what we have seen above, the 
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money that we were supposed to have spent by now. So far so good. This seems naturally 
understood, it is easy to implement it and the theory comes almost naturally. Finally, let’s analyze 
the development of task 1.C. (table 7). 
 

ACWP 15.669,91 € 
1.C. 

BCWP 15.669,91 € 

 BCWS 17.094,45 € 

Table 7: Task 1.C. main variables 

 
In this case BCWP is equal to ACWP because it is spent exactly what it should be according to the 
first predictions. On the other hand, BCWS is greater than BCWP showing that this task is delayed. 
But let´s now determine the secondary variables to put this information in a quantitative way. 
For the task 1.A., and using the equations (1) and (3), it is realized that SV = 0 and SPI = 1. This 
means that this task is on time. On the other hand, when equations (2) and (4) are applied, it can be 
seen that CV has a negative value (showing that this task is overspending) and CPI = 0,95. This 
means that for every 1€ spent, only 0,95€ are actually being converted into work. 
When looking at 1.B., it seems that it does not make much sense to calculate anything because the 
task is yet to start. But notice what happens when equation (1) is used. The result shows SV = -1, 
meaning that not only this task is delayed but also that it should have started but it did not. 
Finally, when looking at 1.C., and applying equations (1) and (3), it is possible to see that SV = -
0,083 (once again showing that this task is delayed) and SPI = 0,92 (meaning that only 92% of the 
time predicted was actually converted in work). Therefore, there was an 8% available time loss. On 
the other hand, equations (2) and (4) show a CV = 0 and CPI = 1, meaning that the amount spent is 
exactly what was predicted. 
Now by knowing what is going on with each one of the tasks that should have begun by now, let`s 
look at the project as a whole and let’s see if should exist any concerns there. As told before, to see 
the overall project, it is necessary to sum all the main variables. In this case, the results are in table 
8. 
 

ACWP 24.774,94 € 

BCWP 24.341,36 € Project - Global Overview 

BCWS 31.380,19 € 

Table 8: Project Main Variables 

 
Just by looking at these numbers it is possible to understand that things are not doing great. Let`s 
quantify it. When (1) is calculated, SV = -0,22. Accordingly, (3) presents a value for SPI of 0,78. So 
this project is definitely behind the schedule. On the other hand, when (2) is applied, it shows a CV 
= -0,02. Again, (4) shows us an CPI = 0,98 which means that this project is overspending. These are 
really bad news. If things continue as they are, this project will not only take more time to finish but 
also will cost more money. Let’s now quantify how much more. From the first predictions it is 
possible to know that this project has a budgeted cost (BAC) of 1.082.348,88€. When using (5), it 
can be realized that the EAC is 1.101.627,86€. Using these two variables, (6) can be calculated and 
it gives a VAC of -19.278,98€. This means that if the project keeps this tendency, when it is over, it 
will have cost more 19.278,98€ than expected. To do a time analysis a Gant graph should be built. 
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EVA does not take into account the critical path nor the slacks of each activity so it is impossible to 
know if a delay now will affect the final date for completion. Nevertheless, this deficiency is easily 
beaten and EVA`s advantages in cost control might be the difference between success and failure.    
 
 
5 Conclusion and Limitations of the Study 

 

First of all, it is important to say that the scenarios built for the case study were made up to provide 
the results wanted because there is no information about the real status of the project. 
In this case study, for task 1.A., it was said that everybody worked 5% more. In real life these 
situations do not happen. One worker might work 10 hours more than expected, other one 7 hours 
less but it is always hard to realize the money that it is actually being spent. This is definitely a key 
success factor for EVA. A good informatics system and the habit of reporting progress and costs are 
the support that EVA requires. 
Another thing to take to keep in mind is that, to simplify the math, we did not took into account the 
overheads nor equipment purchases. Basically, the results shown are just from tasks and their costs. 
Normally, in a project there are other factors that might influence the performances. 
Another key success factor is the quality of the predictions and planning. As it was seen, the earned 
value at the end of a task was always what was predicted. Time allows that a  project plan can be 
thought carefully. 
It was also seen that EVA follows a standard or a tendency. So, spending an extra 1.000€ now, it 
does not mean that, at the end of the project, it will cost just 1000€ more. Probably, if you are 
overspending now you will keep on overspending and at the end of the project you will pay not 
1.000€ but 20.000€ more than expected. 
EVA may represent also a great control tool and it can be used many times to this aim. If something 
is wrong, EVA will definitely warn you on time so you can take corrective actions. 
Finally, every time you use EVA you have to update your schedule. This might not look much 
important but it is and for that it is enough to see the following example. Imagine that a project lasts 
12 months, you use the EVA model after the first one and you realize that the project is delayed. 
You take the actions needed but you forget to update your schedule. When you do another check 
point control, let`s say, at the end of the second month, even if there were not any more delays, the 
effects of that first delay will still be visible and you do not understand why. In other words, after 
that first delay, task X would finish two weeks later than first planned and if you do not update your 
schedule, every time you use EVA you will think that X is delayed another two weeks, when in fact 
it is already a consequence from the first delay. 
To sum up, Earned Value Analysis is a very powerful project control/management tool. It might be 
expensive and it might be difficult to put it into work at the beginning. But if you have a good 
informatics system that collects your costs, if you have experienced personnel in planning and if 
you create your projects knowing that the EVA model will be applied, meaning that your project is 
formed by small and manageable tasks, than Earned Value Analysis may give you an edge and an 
advantage that can make all the difference. 
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LAW OF IMPORTATION
FOR GENERATED FUZZY IMPLICATORS

BIBA Vladislav, (CZ)

Abstract. In the classical logic, term A ⇒ (B ⇒ C) is equivalent with (A ∧ B) ⇒ C.
However, in the fuzzy logic it is not true for all implicators and t-norms. Mentioned
equivalence is know as the Law of importation. Recently, weaker form of this rule were
proposed by Massanet and Torrens in [8], where more general function is used instead of
t-norm.

Key words and phrases. Fuzzy implicator, t-norm, law of importation, generator
function
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1 Preliminaries

We briefly recall definitions and properties of the most important connectives of fuzzy logic.

Definition 1.1 A unary operator N : [0, 1] → [0, 1] is called a fuzzy negation if, for any
x, y ∈ [0, 1],

• x < y ⇒ N(y) ≤ N(x),

• N(0) = 1, N(1) = 0.

The negator N is called a strict negator if and only if the mapping N is continuous and
strictly decreasing. A strict negator is called strong if it is an involution, i.e. N(N(x) = x ∀x ∈
[0, 1]. A dual negator based on N is given by Nd(x) = 1 − N(1 − x).
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Definition 1.2 A non-decreasing mapping C : [0, 1]2 → [0, 1] is called a conjunctor if, for any
x, y ∈ [0, 1], it holds

• C(x, y) = 0 whenever x = 0 or y = 0,

• C(1, 1) = 1.

Commonly used conjunctors in fuzzy logic are the triangular norms.

Definition 1.3 A triangular norm (t-norm for short) is a binary operation on the unit interval
[0, 1], i.e., a function T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1], the following four axioms
are satisfied:
(T1) Commutativity T (x, y) = T (y, x),
(T2) Associativity T (x, T (y, z)) = T (T (x, y), z),
(T3) Monotonicity T (x, y) ≤ T (x, z) whenever y ≤ z,
(T4) Boundary Condition T (x, 1) = x.

We recall some important properties of t-norms which we will use:

Definition 1.4 [6] A t-norm T is continuous if for all convergent sequences {xn}n∈N , {yn}n∈N

we have

T ( lim
n→∞

xn, lim
n→∞

yn) = lim
n→∞

T (xn, yn).

A t-norm T is left-continuous if for each y ∈ [0, 1] and for all non-decreasing sequences {xn}n∈N

we have

lim
n→∞

T (xn, y) = T ( lim
n→∞

xn, y).

Proposition 1.5 A t-norm T is left-continuous if and only if it is left-continuous in its first
component, i.e., if for each y ∈ [0, 1] and for each non - decreasing sequence (xn)n∈N ∈ [0, 1]N

we have

sup
n∈N

T (xn, y) = T (sup
n∈N

xn, y).

Now, we will turn our attention to the Archimedean property. We recall another definition
of Archimedean t-norms, which is equivalent with the classical one.

Proposition 1.6 A t-norm T is Archimedean if and only if for each x ∈]0, 1[ we have

lim
n→∞

T (x, ..., x)
n-times

= 0.

Following important algebraic property is strict monotonicity.

Proposition 1.7 A t-norm T is strictly monotone if and only if the cancelation law holds, i.e.,
if T (x, y) = T (x, z) and x > 0 imply y = z.
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Remark 1.8 Note that the dual operator to the conjunctor C, defined by D(x, y) = 1−C(1−
x, 1 − y) is called the disjunctor. Equivalently, a disjunctor can be defined as a non-decreasing
mapping D : [0, 1]2 → [0, 1] such that D(x, y) = 1 whenever x = 1 or y = 1 and D(0, 0) = 0.
Commonly used disjunctors in fuzzy logic are the triangular conorms. A triangular conorm (also
called a t-conorm) is a binary operation S on the unit interval [0, 1] which, for all x, y, z ∈ [0, 1],
satisfies (T1) − (T3) and (S4) S(x, 0) = x. The original definition of t-conorms given in [10]
is completely equivalent to the previous axiomatic definition, where the t-conorm is based on a
given t-norm T by formula

S(x, y) = 1 − T (1 − x, 1 − y).

For more information, see [7].

In the literature, we can find several different definitions of fuzzy implications. In this paper
we will use the following one, which is equivalent to the definition introduced by Fodor and
Roubens in [4]. The readers can obtain additional informations by reading [1] and [9].

Definition 1.9 A function I : [0, 1]2 → [0, 1] is called a fuzzy implicator if it satisfies the
following conditions:

(I1) I is decreasing in its first variable,

(I2) I is increasing in its second variable,

(I3) I(1, 0) = 0, I(0, 0) = I(1, 1) = 1.

We recall definitions of some important properties of implicators which we will investigate.

Definition 1.10 A fuzzy implicator I : [0, 1]2 → [0, 1] satisfies:

(NP) the left neutrality property, or is called left neutral, if

I(1, y) = y; y ∈ [0, 1],

(EP) the exchange principle if

I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1],

(IP) the identity principle if
I(x, x) = 1; x ∈ [0, 1],

(OP) the ordering property if

x ≤ y ⇐⇒ I(x, y) = 1; x, y ∈ [0, 1],

(CP) the contrapositive symmetry with respect to a given negator N if

I(x, y) = I(N(y), N(x)); x, y ∈ [0, 1],
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(LI) the law of importation with a t-norm T if

I(T (x, y), z) = I(x, I(y, z)); x, y ∈ [0, 1],

(WLI) the weak law of importation with a given function F if

I(F (x, y), z) = I(x, I(y, z)); x, y, z ∈ [0, 1].

Definition 1.11 Let I : [0, 1]2 → [0, 1] be a fuzzy implicator. The function NI defined by
NI(x) = I(x, 0) for all x ∈ [0, 1], is called the natural negator of I.

Our constructions of implicators will make use extensions of the classical inverse of function.
One way of extending is described in next definitions.

Definition 1.12 Let ϕ : [0, 1] → [0,∞] be a non-decreasing function. The function ϕ(−1) which
is defined by

ϕ(−1)(x) = sup{z ∈ [0, 1]; ϕ(z) < x},
is called the pseudo-inverse of the function ϕ, with the convention sup ∅ = 0.

Definition 1.13 Let f : [0, 1] → [0,∞] be a non-increasing function. The function f (−1) which
is defined by

f (−1)(x) = sup{z ∈ [0, 1]; f(z) > x},
is called the pseudo-inverse of the function f, with the convention sup ∅ = 0.

Lemma 1.14 [3] Let N : [0, 1] → [0, 1] be a negator. Then N (−1) is a negator if and only if

N(x) = 0 ⇔ x = 1. (1)

2 Generated implicators

It is well-known that it is possible to generate t-norms from one variable functions. It means it
is enough to consider one variable function instead of two variable function. In our works [3, 5]
and [11] we defined several types of these so-called generated implicators. The first possibility
use a strictly decreasing function f.

Theorem 2.1 [5] Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0.
Then the function If (x, y) : [0, 1]2 → [0, 1] which is given by

If (x, y) =

{
1 if x ≤ y,

f (−1)(f(y+) − f(x)) otherwise,
(2)

where f(y+) = lim
y→y+

f(y) and f(1+) = f(1) is a fuzzy implicator.
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On the other hand for strictly increasing functions g, [11] gives operator Ig.

Theorem 2.2 [11] Let g : [0, 1] → [0,∞] be a strictly increasing function such that g(0) = 0.
Then the function Ig(x, y) : [0, 1]2 → [0, 1] which is given by

Ig(x, y) = g(−1)(g(1 − x) + g(y)), (3)

is an fuzzy implicator.

The implicator Ig can be generalized. This generalization is based on replacing standard negator
by arbitrary one.

Theorem 2.3 [11] Let g : [0, 1] → [0,∞] be a strictly increasing function such that g(0) = 0
and N be a fuzzy negator. Then the function Ig

N :

Ig
N(x, y) = g(−1)(g(N(x)) + g(y)), (4)

is an implicator.

If we compose a strictly decreasing function f with a negator N then g(x) = f(N(x)) is
again an increasing function (though not necessarily strictly increasing). We can apply such a
function g to formula (4) and have another possibility how to generate implicators.

Theorem 2.4 [3] Let f : [0, 1] → [0,∞] be a strictly decreasing function with f(1) = 0, and
N : [0, 1] → [0, 1] be a negator such that formula (1) is fulfilled for N . Then the function

I
(N,N(−1))
f : [0, 1]2 → [0, 1] defined by

I
(N,N(−1))
f (x, y) = N (−1)

(
f (−1) (f(x) + f(N(y)))

)
(5)

is an implicator.

If we consider formula (5), we can see that N (−1) is just another negator. Really, it might be
replaced by an arbitrary negator. However, we would like to keep the procedure of generating
of implicators as simple as possible. Still, there are at least two negators (in general different
from N (−1)) which are related to N . Namely, N itself and Nd. Hence we have the following
two possibilities of generating of implicators.

Theorem 2.5 [3] Let f : [0, 1] → [0,∞] be a strictly decreasing function with f(1) = 0 and
N : [0, 1] → [0, 1] be a negator. Then function IN

f : [0, 1]2 → [0, 1] defined by

IN
f (x, y) = N

(
f (−1) (f(x) + f(N(y)))

)
, (6)

and function I
(N,Nd)
f : [0, 1]2 → [0, 1] defined by

I
(N,Nd)
f (x, y) = Nd

(
f (−1) (f(x) + f(N(y)))

)
, (7)

are implicators.
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3 The (weak) law of importation

In the last section we investigate the law of importation and the weak law of importation for
classes of defined generated implicators. In the first example, we deal with implicator If given
by continuous bounded function:

Example 3.1 Let f1(x) = 1 − x, for implicator If1 we get

If1(x, y) =

{
1 if x ≤ y,

1 − x + y otherwise.

It is easy to show that operators If1(x, If1(y, z)) and If1(T (x, y), z) are:

If1(x, If1(y, z)) =

{
1 if y ≤ z ∨ x ≤ 1 − y + z,

2 − x − y + z otherwise,

If1(T (x, y), z) =

{
1 if T (x, y) ≤ z,

1 − T (x, y) + z otherwise.

Now we can see that If satisfies LI with t-norm T (x, y) = x + y − 1.

The t-norm in the previous example is actually an archimedean t-norm with generator f. In
the following example we deal with different situation, where f is not bounded function:

Example 3.2 Let f2(x) = − ln x, implicator If2 is given by

If2(x, y) =

{
1 if x ≤ y,
y
x

otherwise.

For operators If2(x, If2(y, z)) and If2(T (x, y), z) we get:

If2(x, If2(y, z)) =

{
1 if y ≤ z ∨ x ≤ z

y
,

z
x·y otherwise,

If2(T (x, y), z) =

{
1 if T (x, y) ≤ z,

z
T (x,y)

otherwise.

It is obvious that If2 satisfies LI with t-norm T (x, y) = x · y.
Another implicator satisfying LI with the same t-norm is Ig implicator generated by function
g(x) = − ln(1 − x). Implicator Ig is given by

Ig(x, y) = 1 − x + x · y.

The following proposition is generalization of these examples.
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Proposition 3.3 Let f : [0, 1] → [0,∞] be a continuous strictly decreasing function such that
f(1) = 0 and f(0) = 1. Then the implicator If satisfies the law of importation with t-norm

T (x, y) = f (−1)(f(x) + f(y)).

Proof. Let f be function as described. By definition we have

If (y, z) =

{
1 y ≤ z,

f (−1) (f(z+) − f(y)) otherwise.

Fact, that f is continuous (and strictly decreasing) allows a simplification of previous statement:

If (y, z) =

{
1 y ≤ z,

f−1 (f(z) − f(y)) otherwise.
(8)

Using this fact, we can write If (x, If (y, z)) as

If (x, If (y, z)) =

{
1 x ≤ If (y, z),

f−1(f(z) − f(y) − f(x)) x > If (y, z).
(9)

As f is continuous and strictly decreasing, we have ∀t ∈ [0,∞]; f (−1)(t) = f−1 (min(t, f(0))) .
For any x, y ∈ [0, 1]2, both f(x) and f(y) are non-negative. It means that T can be expressed
as

T (x, y) = f−1 (min(f(x) + f(y), f(0))) . (10)

Using simplified formula (8) we get

If (T (x, y), z) =

{
1 T (x, y) ≤ z,

f−1(f(z) − f(T (x, y))) otherwise.

• The condition T (x, y) ≤ z means that either T (x, y) = 0 or f−1(f(x)+f(y)) ≤ z. In both
cases f(x) + f(y) ≥ f(z), i.e. f(x) ≥ f(z)− f(y). Therefore we get x ≤ If (y, z) (whether
f(z) > f(y) or not) and subsequently If (x, If (y, z)) = 1.

• In case that T (x, y) > z, we get f(x) + f(y) < f(z). It means that y > z and x >
f−1(f(z) − f(y)) as well. Subsequently If (x, If (y, z)) = f−1(f(z) − f(y) − f(x)).

In the previous proposition we demand f to be continuous function. However, there are
also not continuous functions which generates If implicator that satisfies law of importation:

Example 3.4 Let f : [0, 1] → [0, 1] be a function given by

f(x) =

{
1 − 2

3
x if x < 1,

0 if x = 1.
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Implicator If and corresponding mapping If (x, If (y, z)) are given by

If (x, y) =

⎧⎪⎨
⎪⎩

1 if x ≤ y,

y if x = 1,

min(3
2
− x + y, 1) otherwise,

If (x, If (y, z)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if y ≤ z or x ≤ If (y, z),

z if x = y = 1,

min(3
2
− x + z) if x < 1 ∧ y = 1,

min(3
2
− y + z) if x = 1 ∧ y < 1.

Implicator If satisfies the law of importation with t-norm T defined as:

T (x, y) =

{
min(x, y) if max(x, y) = 1,

max(x + y − 3
2
, 0) otherwise.

Proof is done examining each possibility separately.

• Implicator If satisfies the law of importation with all t-norms T ∗ such that T ∗ ≤ T.

• Moreover, If also satisfies the weak law of importation with two-variable functions F with
two properties: F ≤ T and F (x, 1) = F (1, x) = x for all x ∈ [0, 1].

Propositions similar to proposition 3.3, considering only continuous g and strict negators
holds also for Ig, Ig

N . Proofs to these facts are similar to previous proof, Therefore we will
focus to more general case, where negator is not necessary strict:

Proposition 3.5 Let g : [0, 1] → [0,∞] be a continuous strictly increasing function such that
g(0) = 0 and let N : [0, 1] → [0, 1] be a continuous negator satisfying equation 1. Then the
implicator Ig

N holds weak law of importation with function

F (x, y) = N (−1)
(
g(−1)(g(N(x)) + g(N(y)))

)
.

Proof. Let g and N be a function and negator as mentioned in the proposition. Since Ig
N(y, z) =

g(−1) (g(N(y)) + g(z)) , it is easy to show, that

Ig
N(x, Ig

N(y, z)) = g(−1) (g(N(x)) + g(N(y)) + g(z)) . (11)

If Ig
N(y, z) < 1, it is trivial. If Ig

N(y, z) = 1, then Ig
N(x, Ig

N(y, z)) = Ig
N(x, 1) = 1 as well, i.e.

previous equality is correct.
Let F be the function as was defined in the proposition. Continuous negator N implies
that N(N (−1)(t)) = t for all t ∈ [0, 1] and continuous and strictly increasing g means that
g(−1)(g(t)) = min(t, 1) for all t ≥ 0. Using this two facts, we get

g(N(F (x, y))) = min (g(N(x)) + g(N(y)), g(1)) , (12)
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Ig
N(F (x, y), z) = g(−1) (min(g(N(x)) + g(N(y)), g(1)) + g(z)) .

We can remove minimum from the upper term, since any t ≥ g(1) leads to g(−1)(t) = 1.
Therefore we get

Ig
N(F (x, y), z) = g(−1) (g(N(x)) + g(N(y)) + g(z)) ,

which is the same term as in equation 11.

Remark 3.6 Function from previous proposition possess some additional properties:

• F is a commutative conjunctor, which is obvious. Moreover, it is associative as well:
Using equality 12, we get

F (F (x, y), z) = N (−1)
(
g(−1)(g(N(x)) + g(N(y)) + g(N(z))

)

and the same is true for F (x, F (y, z)).

• In case of strict negator, F is a t-norm since F (x, 1) = N (−1)(N(x)) = x.

• If N is strict, then Ig
N satisfies the law of importation only with this t-norm:

Take z = 0, then

Ig
N(x, Ig

N(y, z)) = g(−1)(g(N(x)) + g(N(y)),

Ig
N(F (x, y), z) = N(F (x, y)).

Let Ig
N holds the law of importation with F, then

F (x, y) = N−1(g(−1)(g(N(x)) + g(N(y)))).

There are also not continuous negators N that generates Ig
N implicator which still satisfies

LI. The last example shows one such implicator and corresponding t-norm:

Example 3.7 Let g(x) = x and N(x) = 1− 2
3
x if x < 1, N(0) = 1, then implicator Ig

N is given
by

Ig
N(x, y) =

{
min(1 − 2

3
x + y, 1) if x < 1,

y if x = 1.

This implicator satisfies the law of importation with t-norm

T (x, y) =

{
max(x + y − 3

2
, 0) if x, y < 1,

min(x, y) if max(x, y) = 1.

Note, that both implicator and t-norm are not continuous.
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INVOLVING FUZZY ORDER
IN THE DEFINITION OF MONOTONICITY

FOR AGGREGATION FUNCTION

GRIGORENKO Olga, (LV)

Abstract. In this paper we introduce a fuzzy order relation in the definition of mono-
tonicity for aggregation function. We use the fuzzy order relation to define the degree
of monotonicity, which takes values from the unit interval and is equal to 1 for a mono-
tone function with respect to a crisp order relation. Further we illustrate this definition
by examples and study the properties of aggregation functions which have a degree of
monotonicity equal to 1. We also introduce α levels in the definition of the degree of
monotonicity and thereby obtain a more general and consistent theory.
Key words and phrases. aggregation function, fuzzy order relation, monotonicity.
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1 Introduction

The aim of this work is to introduce a fuzzy order relation in aggregation process, namely, to use
a fuzzy order relation instead of the crisp order relation in the definition of monotonicity. Recall
that an aggregation function is a mapping satisfying boundary conditions and the condition of
monotonicity. In our work we focus only on the condition of monotonicity.

The next two examples illustrate our inspiration which led to the present research:
Let us observe first the aggregation which is illustrated by the Table 1. According to

the definition of aggregation function, the mapping defined above is an aggregation function
(obviously, the monotonicity condition is fulfilled). But if we have a more attentive look at
this example and consider the aggregation results of alternatives a1 and a2 we will find out
that the results are intuitively wrong. We see that the first attribute of the alternative a2 is
less than the first attribute of the alternative a1; the second attribute of a2 is greater than the



Aplimat - Journal of Applied Mathematics

Alternat. First
attrib.

Second
attrib.

Aggreg.
result

a1 0.1 0.3 0.2
a2 0.01 0.31 0.29
a3 0.2 0.4 0.3

Table 1: Motivate example 1.

Alternat. First
attrib.

Second
attrib.

Aggreg.
result

a1 0.1 0.3 0.2
a2 0.2 0.399 0.301
a3 0.2 0.4 0.3

Table 2: Motivate example 2.

second attribute of a1 only a little (is equal to the second attribute of a1 ”in a fuzzy sense”),
so, intuitively, we expect that if even the aggregation result of the alternative a2 is greater
than the aggregation result of the alternative a1, then it should be greater only a little. But
in our example aggregation result of the alternative a1 is less than the aggregation result of
the alternative a2 and we have a big difference between the aggregation results. To avoid such
situations we involve fuzzy order relation in order to define the degree of monotonicity.

Another possible situation where fuzzy order could help is the problem when we have small
mistakes in aggregation, what is actually illustrated by the ”Motivate example 2”. The small
variation of data could change the result drastically. For the question ”Is this an aggregation
function?” we could only answer ”Yes” or ”No”, thus a very small mistake or destroy of data
could change the answer from ”Yes” to ”No”. Let us observe Example 2:
In this case it is not an aggregation function since the monotonicity condition for the pair
(a2, a3) is not fulfilled. But the second row could be realized just as the damaged third one.
Thus, in this case it would be useful to delete the second row or to involve the degree of
monotonicity which not only says ”it is an aggregation function” or ”it is not an aggregation
function” but gives us the degree to which a mapping is a monotone function.

Thus the aim of this work is to define the degree of monotonicity, to observe illustrating
examples and to study the properties of the degree of monotonicity. The problem of the use of
fuzzy order relation in the context of monotonicity of aggregation process was first considered
in our paper [3]. In this work we continue research in this area.

2 Preliminaries

In the sequel we will use the basic notions and properties of t-norms. For this information we
refer the reader to [4]. For the details on aggregation functions we refer the reader to [2].

We continue with an overview of basic definitions and results on fuzzy relations which will
be important for our further research.

Definition 2.1 (see e.g. [1]) A fuzzy binary relation E on a set X is called fuzzy equivalence
relation with respect to a t-norm T , if and only if the following three axioms are fulfilled for all
x, y, z ∈ X :
1) E(x, x) = 1 reflexivity;
2) E(x, y) = E(y, x) symmetry;
3) T (E(x, y), E(y, z)) ≤ E(x, z) T-transitivity.

The following result establishes principles of construction of fuzzy equivalence relations from
pseudo-metrics.
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Theorem 2.2 (see e.g. [1]) Let T be a continuous Archimedean t-norm T with an additive
generator t. For any pseudo-metric d, the mapping Ed(x, y) = t(−1)(min(d(x, y), t(0))) is a
T -equivalence.

Example 2.3 Let us consider the set of real numbers X = R and metric d(x, y) = |x − y| on
it. Taking into account that tL(x) = 1 − x is an additive generator of TL (�Lukasievicz t-norm)
and that tP (x) = −ln(x) is an additive generator of TP (product t-norm), we obtain two fuzzy
equivalence relations:

EL(x, y) = max(1 − |x − y|, 0);
EP (x, y) = e−|x−y|.

Definition 2.4 [1] Let � be a crisp order on X and let E be a fuzzy equivalence relation on X.
E is called compatible with � if and only if the following implication holds for all x, y, z ∈ X :
x � y � z ⇒ (E(x, z) ≤ E(y, z) and E(x, z) ≤ E(x, y)).

Remark 2.5 Let X be the set of real numbers and ≤ be a linear order on it. Then, for a
fixed element x0, E(x, x0) is non-decreasing in the interval [−∞, x0] and non-increasing in the
interval [x0,∞], where E is a fuzzy equivalence relation which is compatible with ≤.

Definition 2.6 (see e.g. [1]) A T -transitive fuzzy relation L : X2 → [0, 1] is called fuzzy order
relation with respect to a t-norm T and a T -equivalence E, if and only if it additionally fulfills
the following two axioms for all x, y ∈ X :

1. L(x, y) ≥ E(x, y) E-reflexivity;

2. T (L(x, y), L(y, x)) ≤ E(x, y) T -E-antisymmetry.

A fuzzy order L is called strongly linear if and only if ∀x, y ∈ X : max(L(x, y), L(y, x)) = 1.

The following theorem states that strongly linear fuzzy order relations are uniquely charac-
terized as fuzzifications of crisp linear orders.

Theorem 2.7 [1] Let L be a binary fuzzy relation on X and let E be a T -equivalence on X.
Then the following two statements are equivalent:

1. L is a strongly linear T -E-order on X.

2. There exists a linear order � the relation E is compatible with, such that L can be repre-
sented as follows:

L(x, y) =

{
1, if x � y

E(x, y), otherwise.

This theorem shows that if we have a set X, a linear order � on it and a T -equivalence on
X which is compatible with �, then we can build a fuzzy linear order as it was shown above.

Further, in some theorems we consider fuzzy order relation on interval [0, 1] as a function

L(x, y) =

{
1, if x ≤ y

g(|x − y|), otherwise,
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where g is a non-increasing function. We do not claim that in general L thus defined is a fuzzy
order relation, because it depends on the choice of a function g. But the necessary condition
for a relation E(x, y) = g(|x− y|) to be compatible with ≤ is that function g is non-increasing.
Therefore, if we prove a result for an arbitrary fuzzy relation L defined above, the theorem will
also hold for a fuzzy order relation

R(x, y) =

{
1, if x ≤ y

E(x, y) = g(|x − y|), otherwise,

where E is a fuzzy equivalence relation compatible with ≤.

3 Degree of monotonicity

We start with definition of the degree of monotonicity.

Definition 3.1 Let f : [0, 1]n → [0, 1] be a function (aggregation function),
P : [0, 1]2 → [0, 1] be a fuzzy order relation and 
→T a residuum corresponding to the t-norm
T . We define the degree of monotonicity for a function (aggregation function) f w.r.t fuzzy
relation P and residuum 
→T in the following way:

MP,�→T
(f) = inf

x,y
(∧iP (xi, yi) 
→T P (f(x), f(y))).

In the sequel, we will often write x to denote an element x = (x1, ..., xn) and for simplicity
of notation we write x ≤ y where x = (x1, ..., xn), y = (y1, ..., yn) if xi ≤ yi for all i ∈ {1, ..., n}.
Example 3.2 Let us observe the examples which we have presented in the introduction and
let us calculate the degree of monotonicity for these aggregations. Let us denote by A the
aggregation function, namely, A(ak) denotes the aggregation result for the alternative ak. We
calculate the degree of monotonicity with respect to the fuzzy order relation:

P (ai, bi) =

{
1, if ai ≤ bi

max(1 − |ai − bi|, 0), otherwise
,

based on �Lukasiewicz T -norm (see Example 2.3 and Theorem 2.7) and the residuum correspond-
ing to the same t-norm: a 
→T b = min(1 − a + b, 1) (�Lukasiewicz residuum).

The preliminary results which we get calculating the value ∧iP (aki, ani) 
→T P (A(ak), A(an))
(let us denote this value by ω(ak, an)) for every two alternatives ak and an we summarize in
Table 3 and Table 4:

For the first example the degree of monotonicity is equal to 0.92. We note ”deficiency” for
the alternatives a2 and a1 - the result which we expected to get (see Introduction).

For the example which we have presented in the introduction in the Table 2. the degree of
monotonicity is equal to 0.999.

Further we study the properties of aggregation functions which have a degree of monotonicity
equal to 1.
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Table 3: Motivate example 1.

Alt. ak and an ω(ak, an)
a1 and a2 1
a1 and a3 1
a2 and a1 0.92
a2 and a3 1
a3 and a1 1
a3 and a2 1

Table 4: Motivate example 2.

Alt. ak and an ω(ak, an)
a1 and a2 1
a1 and a3 1
a2 and a1 0.999
a2 and a3 0.999
a3 and a1 1
a3 and a2 1

Proposition 3.3 The degree of monotonicity for a function f with respect to a crisp linear
order is equal to 1 if and only if f is a monotone function.

Proof is obvious, see e.g. [3].

We continue with the proposition stating that the degree of monotonicity for the weighted
mean with respect to certain fuzzy order relation and residuum, corresponding to the left-
continuous t-norm is equal to 1.

Proposition 3.4 Let f be the weighted mean: f(x1, x2, ..., xn) =
n∑

i=1

wixi where weight wi

are non negative and
n∑

i=1

wi = 1, and let g be a non-increasing function. Then the degree of

monotonicity for function f with respect to the fuzzy order relation

P (xi, yi) =

{
1, if xi ≤ yi

g(|xi − yi|), otherwise

and the residuum 
→T , where T is a left-continuous t-norm, is equal to 1.

Proof. To find the value
inf
x,y

(∧iP (xi, yi) 
→T P (f(x), f(y))) we consider two cases:

1. If xi ≤ yi, ∀i ∈ {1, 2, ..., n} then P (x1, y1) = · · · = P (xn, yn) = 1 by the definition of fuzzy
relation P .

Since obviously
n∑

i=1

wixi ≤
n∑

i=1

wiyi it follows that P (
n∑

i=1

wixi,
n∑

i=1

wiyi) = 1.

Hence (∧iP (xi, yi) 
→T P (f(x), f(y))) = (1 
→T 1) = 1.

2. Now we consider the case when there exists such a set K ⊆ I (I = {1, 2, ..., n}) :
∀k ∈ K xk > yk.
Let g(|xl − yl|) = min

k∈K
g(|xk − yk|) = ∧iP (xi, yi). Thus ∀k ∈ K g(|xl − yl|) ≤ g(|xk − yk|)

and therefore |xk − yk| ≤ |xl − yl| since the function f is non-increasing.
If f(x) ≤ f(y) then P (f(x), f(y)) = 1 and (∧iP (xi, yi) 
→T P (f(x), f(y))) =
= (P (xl, yl) 
→T 1) = 1.
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We consider the case when f(x) > f(y):
n∑

i=1

wixi >
n∑

i=1

wiyi.

Further |f(x) − f(y)| = |
n∑

i=1

wixi −
n∑

i=1

wiyi| =
n∑

i=1

wixi −
n∑

i=1

wiyi =
n∑

i=1

wi(xi − yi) ≤
≤ ∑

k∈K

wk(xk − yk) ≤ (xl − yl) ·
∑

k∈K

wk ≤ |xl − yl| and then g(|xl − yl|) ≤ g(|f(x)− f(y)|).
Finally, (∧iP (xi, yi) 
→T P (f(x), f(y))) = (P (xl, yl) 
→T P (f(x), f(y))) = 1.

We have shown that (∧iP (xi, yi) 
→T P (f(x), f(y))) = 1 for all x and y. Hence MP,�→T
(f) = 1.

Theorem 3.5 Let f : [0, 1]n → [0, 1] be a monotone function, T be a continuous Archimedean
t-norm with an additive generator t and let d be an arbitrary pseudo-metric in interval [0, 1]
such that d(a, b) ≤ t(0) for all a and b from the unit interval. Then the degree of monotonicity
for function f with respect to the residuum 
→T and the fuzzy order relation

P (xi, yi) =

{
1, if xi ≤ yi

Ed(xi, yi), otherwise

is equal to 1 if and only if ∀ x = (x1, ..., xn), y = (y1, ..., yn)

f(x) > f(y) ⇒ d(f(x), f(y)) ≤ max
xi>yi

(d(xi, yi)).

Proof. The sufficiency is proved in [3]. We continue by proving the necessity. Let us assume
that there exist such elements x and y that f(x) > f(y) but d(f(x), f(y)) > max

xi>yi

(d(xi, yi)).

Then let us calculate the value ∧iP (xi, yi) → P (f(x), f(y)). Let k be an integer for which
∧iP (xi, yi) = P (xk, yk) = Ed(xk, yk) = t(−1)(min(d(xk, yk), t(0))).
Since f(x) > f(y) we have P (f(x), f(y)) = t(−1)(min(d(f(x), f(y)), t(0))).
Then ∧iP (xi, yi) 
→T P (f(x), f(y)) =
= t(−1)(max(t(t(−1)(min(d(f(x), f(y)), t(0)))) − t(t(−1)(min(d(xk, yk), t(0)))), 0)) =
= t(−1)(max(min(d(f(x), f(y)), t(0))−min(d(xk, yk), t(0)), 0)) < t(−1)(0). The last inequality is
true since min(d(f(x), f(y)), t(0)) − min(d(xk, yk), t(0)) > 0 and t(−1) is a strictly decreasing
mapping. Thus ∧iP (xi, yi) 
→T P (f(x), f(y)) 
= 1.

4 Involving α-levels in the definition of the degree of monotonicity

Not for every monotone function f MP,�→T
(f) is equal to 1. Let illustrate this with the following

example:

Example 4.1 Let us evaluate the degree of monotonicity for weak t-norm

TW (x1, x2) =

{
min(x1, x2), if x1 ∨ x2 = 1

0, otherwise
,
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(which is obviously a monotone function), with respect to the fuzzy order relation

P (xi, yi) =

{
1, if xi ≤ yi

g(|xi − yi|), otherwise
,

where g is a continuous non-increasing mapping, and the residuum 
→T corresponding to a left-
continuous t-norm:
MP,�→T

(TW ) ≤ inf
x=(1,1),

y=(y0,y0),
y0∈[0,1)

(∧iP (xi, yi) 
→T P (TW (x), TW (y))) =

= inf
y0∈[0,1)

(P (1, y0) 
→T P (1, 0)) = sup
y0∈[0,1)

P (1, y0) →T P (1, 0) = 1 →T P (1, 0) = P (1, 0) = g(1).

It is not naturally to define a mapping g in such way that g(1) = 1, in this case g is equal to 1
for all arguments from the unit interval. So, for the mappings g such that g(1) 
= 1 MP,�→T

(TW )
is not equal to 1.

Calculating the degree of monotonicity of a monotone function f for every two elements
x, y : x < y we have to compute the value ∧iP (yi, xi) 
→T P (f(y), f(x)) which is equal to

∧iE(yi, xi) 
→T E(f(y), f(x)) in case when P (xi, yi) =

{
1, if xi ≤ yi

E(xi, yi), otherwise
.

Then if f is a monotone function the necessary condition for MP,�→T
(f) = 1 is

inf
x<y

(∧iE(yi, xi) 
→T E(f(y), f(x))) = 1.

Intuitively this is the degree of the statement: ”if x and y are indistinguishable then f(x) and
f(y) are indistinguishable”. This is something more than just generalization of monotonicity.
But we think that it could be a useful condition for the study of aggregation processes.

Actually, if we want to be closer to the classical (crisp) definition of monotonicity, we can
calculate the value ∧iP (xi, yi) 
→T P (f(x), f(y)) only for those elements x, y which are in the
relation x ≤ y in a certain fuzzy sense. By this we mean that the value ∧iP (xi, yi) should be
close to 1. One can choose a constant α from the interval [0, 1] to define what ”close to 1” does
mean and calculate the degree of α-monotonicity:

Definition 4.2 Let f : [0, 1]n → [0, 1] be a function (aggregation function),
P : [0, 1]2 → [0, 1] be a fuzzy order relation and 
→T a residuum corresponding to the t-norm
T . We define the degree of α-monotonicity for a function (aggregation function) f w.r.t fuzzy
relation P and residuum 
→T in the following way:

Mα
P,�→T

(f) = inf
∧iP (xi,yi)≥α

(∧iP (xi, yi) 
→T P (f(x), f(y))).

It is easy to see that if a fuzzy order P and a t-norm T are fixed and α1 ≤ α2 then Sα1 ⊆ Sα2 ,
where Sα1 = {f : Mα1

P,→T
(f) = 1} and Sα2 = {f : Mα2

P,→T
(f) = 1}.

5 Example

Let observe the following example, where f is an arithmetic mean destroyed at one point

x1 = x2 = 0.5: f(x1, x2) =

{
x1+x2

2
, x1, x2 
= 0.5

0.6, x1 = x2 = 0.5
.
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Figure 1: f(x1, x2)

We involve the fuzzy order relation:

P (xi, yi) =

{
1, if xi ≤ yi

max(1 − |xi − yi|, 0), otherwise
,

based on �Lukasiewicz t-norm (see Example 2.3 and Theorem 2.7). and calculate the degree of
monotonicity with respect to three different residuums:
a) residuum corresponding to the �Lukasiewicz t-norm: a 
→TL

b = min(1 − a + b, 1);

b) residuum corresponding to the minimum t-norm: a 
→TM
b =

{
1, if a ≤ b

b, otherwise
;

c) residuum corresponding to the product t-norm: a 
→TP
b =

{
1, if a ≤ b
b
a
, otherwise

.

The function f is monotone everywhere except of point (0.5, 0.5), so we define the defect of
monotonicity of function f as

def(f) = f(0.5, 0.5) − lim
(x1,x2)→(0.5,0.5)

f(x1, x2) = 0.1.

We calculate the degree of monotonicity for function f with respect to the fuzzy order relation
P and each residuum (we will use the abbreviation 
→T if we mean any of the residuums

→TL

,
→TM
or 
→TP

). According to Proposition 3.4, for every two elements x, y ((x1, x2) 
=
(0.5, 0.5) and (y1, y2) 
= (0.5, 0.5)) ∧iP (xi, yi) 
→T P (f(x), f(y)) = 1. Thus we must find the
value ∧iP (xi, yi) 
→T P (f(x), f(y)) for all x, y where (x1, x2) = (0.5, 0.5) or (y1, y2) = (0.5, 0.5).
For the brevity we involve notation ωP,�→T

(x, y) = ∧iP (xi, yi) 
→T P (f(x), f(y)).
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Then MP,�→T
(f) = inf

x,y
ωP,�→T

(x, y). We know that: inf
x,y �=(0.5,0.5)

ωP,�→T
(x, y) = 1, so we have to

find inf
x=(0.5,0.5)

ωP,�→T
(x, y) and inf

y=(0.5,0.5)
ωP,�→T

(x, y).

• (x1, x2) = (0.5, 0.5).
The results are visualized by the following illustration (for more details see [3]):

Figure 2: ωP,�→TL
(x, y),

where x = (0.5, 0.5)
Figure 3: ωP,�→TM

(x, y),
where x = (0.5, 0.5)

Figure 4: ωP,�→TP
(x, y),

where x = (0.5, 0.5)

• (y1, y2) = (0.5, 0.5)
According to the Proposition 3.4,
P (x1, 0.5) ∧ P (x2, 0.5) 
→T P (f(x), 0.5) = 1. It is easy to verify (using the properties of
the residuum 
→T and the properties of the fuzzy order relation P ) that if f(0.5, 0.5) ≥ 0.5
and f(x1, x2) = x1+x2

2
for all (x1, x2), where (x1, x2) 
= (0.5, 0.5) then

P (x1, 0.5) ∧ P (x2, 0.5) 
→T P (f(x), f(0.5, 0.5)) = 1.

Therefore using the above investigations, we obtain the following results:
a) MP,�→TL

(f) = 1 − def(f) = 0.9;
b) MP,�→TM

(f) = 0.4;
c) MP,�→TP

(f) = 0.8.

Thus in these examples the best result is when both the fuzzy order P and the residuum
correspond to the same, �Lukasiewicz t-norm.

Now let observe the first case from the previous example, when the degree of monotonicity
for the destroyed arithmetic mean is calculated with respect to the �Lukasiewicz residuum. It
is interesting to see what result we obtain if we suppose that two points are indistinguishable
if the distance between them is less or equal to 0.1. Thus we would like ”to get round” the
deficiency of 0.1. Further we calculate the degree of monotonicity for the function

f(x1, x2) =

{
x1+x2

2
, x1, x2 
= 0.5

0.6, x1 = x2 = 0.5
with respect to �Lukasiewicz residuum and the following

fuzzy order relation: PMod(xi, yi) =

{
1, if xi ≤ yi + 0.1

1.1 − |xi − yi|, otherwise
.
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As in the previous example ωPMod,�→TL
(x, y) is equal to 1 if y = (0.5, 0.5). The results when

x = (0.5, 0.5) are visualized by the following illustration. To compare the results for ωPMod,�→TL

and ωP,�→TL
(x, y) we fix in the graph two points: (0.5, 0.5, 0.9) and (0.5, 0.5, 1).

Figure 5: ωPMod,�→TM
(x, y),where x = (0.5, 0.5) Figure 6: ωP,�→TM

(x, y),where x = (0.5, 0.5)

We see that using fuzzy order relation PMod where we tried ”to get round” the deficiency
of 0.1 we get the same result MPMod,�→TL

(f) = 1 − def(f) = 0.9. To improve the situation we

can calculate the degree of α-monotonicity for α = 0.9. In this case M0.9
P,�→T

(f) = 1. So ”to get
round” the deficiency we should both modify the fuzzy order relation and use the definition of
the degree of α-monotonicity.

6 Conclusion

The degree of monotonicity is calculated for a concrete mapping and depends on this mapping,
fuzzy order relation and residuum which are chosen by an expert. The degree of monotonicity
takes its values from the interval [0,1]. In case of a crisp order relation the property of having
the degree of monotonicity equal to 1 is equivalent to the property of being monotone in the
crisp sense. We consider the behavior of the degree of monotonicity calculated with respect to
the given fuzzy order relation and residuum, illustrating it with examples. Besides, we study
how a deficiency of monotonicity influences the degree of monotonicity. In the work we also
study necessary properties when the degree of monotonicity is equal to 1. Note that a more
complete theory is obtained by involving α levels in the definition of the degree of monotonicity.
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NON-CLAUSAL RESOLUTION AND FUZZY LOGIC

HABIBALLA Hashim (CZ)

Abstract. The paper presents experimental comparison of several resolution strategies for
reasoning in Fuzzy Predicate Logic with evaluated syntax. Resolution-based reasoning is
established on previous works concerning non-clausal resolution principle both theoretical
and application-oriented (FPLGERDS inference engine).

Key words and phrases. Fuzzy inference, Fuzzy Description Logic, Resolution Strate-
gies.

1 Introduction

Fuzzy Predicate Logic with Evaluated Syntax (FPL) [11] is a well-studied and wide-used logic
capable of expressing vagueness. It has a lot of applications based on robust theoretical back-
ground. The knowledge representation itself doesn’t lead to full applicable deductive system.
It also requires an efficient formal proof theory. Since DL is semantically a subclass of FOL it
may use various proved techniques like tableaux algorithm. However the most widely applied
resolution principle [3] brings syntactically several obstacles mainly arising from normal form
transformation. FPL is associating with even harder problems when trying to use the resolution
principle. The solutions to these obstacles based on the non-clausal resolution [2] were already
proposed in [7] and [6].

It leads to the refutational resolution theorem prover for FDL (RRTPFDL). FDL has been
presented in a simple form in [?] and in more general form in [10] with strong computability and
time complexity results. The article refers to some definitions from cited refutational resolution
theorem provers for DL (RRTPDL) and FPL (RRTPFPL).

Another issue addressed in the paper concerns to the efficiency of presented inference strate-
gies developed originally for the proving system. We show their perspectives in combination
with standard proof-search strategies. The main problem for the fuzzy logic theorem proving
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lies in the large amount of possible proofs with different degrees and there is presented an
algorithm (Detection of Consequent Formulas - DCF) solving this problem. The algorithm is
based on detection of such redundant formulas (proofs) with different degrees.

2 General resolution and unification extensions for existentiality

For the purposes of (RRTPFPL) we will use generalized principle of resolution, which is defined
in the research report [1]. There is a propositional form of the rule defined at first and further it
is lifted into first-order logic. We will introduce the propositional form of the general resolution.

General resolution - propositional version

F [G] F ′[G]

F [G/⊥] ∨ F ′[G/�]
(1)

where the propositional logic formulas F and F ′ are the premises of inference and G is an
occurrence of a subformula of both F and F ′. The expression F [G/⊥]∨F ′[G/�] is the resolvent
of the premises on G. Every occurrence of G is replaced by false in the first formula and by true
in the second one. It is also called F the positive, F’ the negative premise, and G the resolved
subformula.

The proof of the soundness of the rule is similar to clausal resolution rule proof. Suppose
the Interpretation I in which both premises are valid. In I, G is either true or false. If G (¬G)
is true in I, so is F ′[G/�] (F [G/⊥]).

Revised version of the paper which forms the core of the handbook [2] is closely related
with notion of selection functions and ordering constraints. By a selection functions we mean a
mapping S that assigns to each clause C a (possibly empty) multiset S(C) of negative literals
in C. In other words, the function S selects (a possibly empty) negative subclause of C. We say
that an atom A, or a literal ¬A, is selected by S if ¬A occurs in S(C). (There are no selected
atoms or literals if S(C) is empty.) As an usual ordering can be used lexicographic path ordering
over a total precedence. But in this case the ordering is admissible if predicate symbols have
higher precedence than logical symbols and the constants � and ⊥ are smaller than the other
logical symbols. It means the ordering is following A �≡�⊃� ¬ � ∨ � ∧ � � � ⊥. The
handbook also addresses another key issues for automated theorem proving - the efficiency of
the proof search. This efficiency is closely related with the notion of redundancy.

If we want to generalize the notion of resolution and lift it into first-order case we have to
define first the notion of selection function for general clauses. General clauses are multisets
of arbitrary quantifier-free formulas, denoting the disjunction of their elements. Note, that we
can also work with a special case of such a general clauses with one element, which yields to a
standard quantifier-free formula of first-order logic. A (general selection) function is a mapping
S that assigns to each general clause C a (possibly empty) set C of non-empty sequences of
(distinct) atoms in C such that either S(C) is empty or else, for all interpretations I in which C
is false, there exists a sequence A1, ..., Ak in S(C), all atoms of which are true in I. A sequence
A1, ..., Ak in S(C) is said to be selected (by S).

We have to define the notion of polarity for these reasons according to the handbook [2]. It
is based on the following assumption that a subformula F ′ in E[F ′] is positive (resp. negative),
if E[F ′/�] (resp. E[F ′/⊥]) is a tautology. Thus, if F ′ is positive (resp. negative) in E, F ′
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(resp. ¬F ′) logically implies E. Even it should seem that determining of the polarity of any
subformula is NP-complete (hard) problem, we can use syntactic criteria for this computation.
In this case the complexity of the algorithm is linear (note that we base our theory on similar
syntactic criteria below - structural notions definition).

When trying to refine the general resolution rule for fuzzy predicate logic , it is important
to devise a sound and complete unification algorithm. Standard unification algorithms require
variables to be treated only as universally quantified ones. We will present a more general
unification algorithm, which can deal with existentially quantified variables without the need
for those variables be eliminated by skolemization. It should be stated that the following
unification process doesn’t allow an occurrence of the equivalence connective. It is needed to
remove equivalence by rewrite rule: A ↔ B ⇔ [A → B] ∧ [B → A].

We assume that the language and semantics of FOL is standard. We use terms - individuals
(a, b, c, ...), functions (with n arguments) (f, g, h, ...), variables (X,Y, Z, ...), predicates(with n
arguments) (p, q, r, ...), logical connectives (∧,∨,→,¬), quantifiers (∃,∀) and logical constants
(⊥,�). We also work with standard notions of logical and special axioms (sets LAx, SAx),
logical consequence, consistency etc. as they are used in mathematical logic.

Definition 1
Structural notions of a FOL formula
Let F be a formula of FOL then the structural mappings Sub (subformula), Sup (superformula),
Pol (polarity) and Lev (level) are defined as follows:

F = G ∧ H Sub(F ) = {G, H}, Sup(G) = Sup(H) = F
or F = G ∨ H Pol(G) = Pol(F ) = Pol(H)
F = G → H Sub(F ) = {G, H}, Sup(G) = Sup(H) = F

Pol(G) = −Pol(F ), Pol(H) = Pol(F )
F = ¬G Sub(F ) = {G}, Sup(G) = F

Pol(G) = −Pol(F )
F = ∃αG Sub(F ) = {G}, Sup(G) = F
or F = ∀αG Pol(G) = Pol(F )
(α is a variable)

Sup(F ) = ∅ ⇒ Lev(F ) = 0, Pol(F ) = 1,
Sup(F ) �= ∅ ⇒ Lev(F ) = Lev(Sup(F )) + 1
For mappings Sub and Sup reflexive and transitive closures Sub∗ and Sup∗ are defined recur-
sively as follows:
1. Sub∗(F ) ⊇ {F}, Sup∗(F ) ⊇ {F}
2. Sub∗(F ) ⊇ {H|G ∈ Sub∗(F ) ∧ H ∈ Sub(G)}, Sup∗(F ) ⊇ {H|G ∈ Sup∗(F ) ∧ H ∈ Sup(G)}
Example: A → B - Pol(A) = −1, Pol(B) = 1, Lev(A) = 1

These structural mappings provide framework for assignment of quantifiers to variable oc-
currences. It is needed for the correct simulation of skolemization (the information about a
variable quantification in the prenex form). Subformula and superformula mappings and its
closures encapsulate essential hierarchical information of a formula structure. Level gives the
ordering with respect to the scope of variables (which is also essential for skolemization simu-
lation - unification is restricted for existential variables). Polarity enables to decide the global
meaning of a variable (e.g. globally an existential variable is universal if its quantification
subformula has negative polarity). Sound unification requires further definitions on variable
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quantification. We will introduce notions of the corresponding quantifier for a variable occur-
rence, substitution mapping and significance mapping (we have to distinguish between original
variables occurring in special axioms and newly introduced ones in the proof sequence).

Definition 2
Variable assignment, substitution and significance
Let F be a formula of FOL, G = p(t1, ..., tn) ∈ Sub∗(F ) atom in F and α a variable oc-
curring in ti. Variable mappings Qnt(quantifier assignment), Sbt (variable substitution) and
Sig(significance) are defined as follows:

Qnt(α) = QαH,whereQ = ∃ ∨ Q = ∀, H, I ∈ Sub∗(F ), QαH ∈ Sup∗(G),
∀QαI ∈ Sup∗(G) ⇒ Lev(QαI) < Lev(QαH).
F [α/t′] is a substitution of term t′ into α in F ⇒ Sbt(α) = t′.
A variable α occurring in F ∈ LAx ∪ SAx is significant w.r.t. existential substitution,
Sig(α) = 1 iff variable is significant, Sig(α) = 0 otherwise.

Example: ∀x(∀xA(x) → B(x)) - Qnt(x) = ∀xA(x), for x in A(x) and Qnt(x) = ∀x(∀xA(x) →
B(x)), for x in B(x).

Note that with Qnt mapping (assignment of first name matching quantifier variable in a
formula hierarchy from bottom) we are able to distinguish between variables of the same name
and there is no need to rename any variable. Sbt mapping holds substituted terms in a quantifier
and there is no need to rewrite all occurrences of a variable when working with this mapping
within unification. It is also clear that if Qnt(α) = ∅ then α is a free variable. These variables
could be simply avoided by introducing new universal quantifiers to F. Significance mapping is
important for differentiating between original formula universal variables and newly introduced
ones during proof search (an existential variable can’t be bounded with it).

Before we can introduce the standard unification algorithm, we should formulate the notion
of global universal and global existential variable (it simulates conversion into prenex normal
form).

Definition 3
Global quantification
Let F be a formula without free variables and α be a variable occurrence in a term of F .

1. α is a global universal variable (α ∈ V ar∀(F )) iff (Qnt(α) = ∀αH
∧Pol(Qnt(α)) = 1) or (Qnt(α) = ∃αH ∧ Pol(Qnt(α)) = −1)

2. α is a global existential variable (α ∈ V ar∃(F )) iff (Qnt(α) = ∃αH
∧Pol(Qnt(α)) = 1) or (Qnt(α) = ∀αH ∧ Pol(Qnt(α)) = −1)

V ar∀(F ) and V ar∃(F ) are sets of global universal and existential variables.

Example: F = ∀y(∀xA(x) → B(y)) - x is a global existential variable, y is a global universal
variable.

It is clear w.r.t. skolemization technique that an existential variable can be substituted
into an universal one only if all global universal variables over the scope of the existential one
have been already substituted by a term. Skolem functors function in the same way. Now
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we can define the most general unification algorithm based on recursive conditions (extended
unification in contrast to standard MGU).

Definition 4
Most general unifier algorithm
Let G = p(t1, ..., tn) and G′ = r(u1, ..., un) be atoms. Most general unifier (substitution map-
ping) MGU(G, G’) = σ is obtained by following atom and term unification steps or the algo-
rithm returns fail-state for unification. For the purposes of the algorithm we define the Variable
Unification Restriction (VUR).

Variable Unification Restriction

Let F1 be a formula and α be a variable occurring in F1, F2 be a formula, t be a term occurring
in F2 and β be a variable occurring in F2. Variable Unification Restriction (VUR) for (α,t)
holds if one of the conditions 1. and 2. holds:

1. α is a global universal variable and t �= β, where β is a global existential variable and α
not occurring in t (non-existential substitution)

2. α is a global universal variable and t = β, where β is a global existential variable and
∀F ∈ Sup∗(Qnt(β)), F = QγG, Q ∈ {∀,∃}, γ is a global universal variable, Sig(γ) = 1
⇒ (Sbt(γ) = r′) ∈ σ, r′ is a term (existential substitution).

Atom unification

1. if n = 0 and p = r then σ = ∅ and the unifier exists (success-state).

2. if n > 0 and p = r then perform term unification for pairs (t1, u1), . . . , (tn, un); If for
every pair unifier exists then MGU(G,G′) = σ obtained during term unification (success
state).

3. In any other case unifier doesn’t exist (fail-state).

Term unification (t′, u′)

1. if u′ = α, t′ = β are variables and Qnt(α) = Qnt(β) then unifier exists for (t′, u′) (success-
state) (occurrence of the same variable).

2. if t′ = α is a variable and (Sbt(α) = v′) ∈ σ then perform term unification for (v′, u′); The
unifier for (t′, u′) exists iff it exists for (v′, u′) (success-state for an already substituted
variable).

3. if u′ = α is a variable and (Sbt(α) = v′) ∈ σ then perform term unification for (t′, v′);
The unifier for (t′, u′) exists iff it exists for (t′, v′) (success-state for an already substituted
variable).

4. if t′ = a, u′ = b are individual constants and a = b then for (t’,u’) unifier exists (success-
state).
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5. if t′ = f(t′1, ..., t
′
m), u′ = g(u′

1, ..., u
′
n) are function symbols with arguments and f = g then

unifier for (t′, u′) exists iff unifier exists for every pair (t′1, u
′
1), ..., (t′n, u

′
n) (success-state).

6. if t′ = α is a variable and VUR for (t′, u′) holds then unifier exists for (t′, u′) holds and
σ = σ ∪ (Sbt(α) = u′) (success-state).

7. if u′ = α is a variable and VUR for (u′, t′) holds then unifier exists for (t′, u′) holds and
σ = σ ∪ (Sbt(α) = t′) (success-state).

8. In any other case unifier doesn’t exist (fail-state).

MGU(A) = σ for a set of atoms A = {G1, . . . , Gk} is computed by the atom unification for
(G1, Gi), σi = MGU(G1, Gi),∀i, σ0 = ∅, where before every atom unification (G1, Gi), σ is set
to σi−1.

With above defined notions it is simple to state the general resolution rule for FOL (without
the equivalence connective). It conforms to the definition from [1].

Definition 5
General ordered resolution with selection for first-order logic (GRFOL)

F [G1, , ..., Gk] F ′[G′
1, ..., G

′
n]

Fσ[G/⊥] ∨ F ′σ[G/�]
(2)

where σ = MGU(A) is the most general unifier (MGU) of the set of the atoms
A = {G1, . . . , Gk, G

′
1, . . . , G

′
n} , G = G1σ. For every variable α in F or F ′, (Sbt(γ) = α)∩σ = ∅

⇒ Sig(α) = 1 in F or F ′ iff Sig(α) = 1 in Fσ[G/⊥] ∨ F ′σ[G/�]. F is called positive
and F’ is called negative premise, G represents an occurrence of an atom. The expression
Fσ[G/⊥] ∨ F ′σ[G/�] is the resolvent of the premises on G.
and
(i) either G is selected by S in F ′, or else S(F ′) is empty, G is maximal in F ′, (ii) atom G is
maximal in F , and (iii) F does not contain a selected atom.

Note that with Qnt mapping we are able to distinguish variables not only by its name
(which may not be unique), but also with this mapping (it is unique). Sig property enables
to separate variables, which were not originally in the scope of an existential variable. When
utilizing the rule it should be set the Sig mapping for every variable in axioms and negated goal
to 1. We present a very simple example of existential variable unification before we introduce
the refutational theorem prover for FOL.

3 Fuzzy Predicate Logic and refutational proof

The fuzzy predicate logic with evaluated syntax is a flexible and fully complete formalism,
which will be used for the below presented extension [11]. In order to use an efficient form
of the resolution principle we have to extend the standard notion of a proof (provability value
and degree) with the notion of refutational proof (refutation degree). Propositonal version
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of the fuzzy resolution principle has been already presented in [5]. We suppose that set of
truth values is �Lukasiewicz algebra. Therefore we assume standard notions of conjunction,
disjunction etc. to be bound with �Lukasiewicz operators. It is important that we assume that
for every subformula Sub, Sup, Pol, Lev,Qnt, Sbt, Sig and other derived properties defined in
section 2 hold (where the classical FOL connective is presented the �Lukasiewicz one has the
same mapping value).

Definition 6
Evaluated proof, refutational proof and refutation degree
An evaluated formal proof of a formula A from the fuzzy set X ⊂∼ FJ is a finite sequence of

evaluated formulas w := a0
/
A0, a1

/
A1, ..., an

/
An such that An := A and for each i ≤ n,

either there exists an m-ary inference rule r such that
ai

/
Ai := revl(ai1 , ..., aim)

/
rsyn(Ai1 , ..., Aim),

i1, ..., im < n or ai
/
Ai := X(Ai)

/
Ai.

We will denote the value of the evaluated proof by V al(w) = an.
An evaluated refutational formal proof of a formula A from X is w, where additionally a0

/
A0 :=

1
/¬A and An := ⊥. V al(w) = an is called refutation degree of A.

Definition 7
General ordered resolution with selection for fuzzy predicate logic (GRFPL)

rGR :
a
/
F [G1, , ..., Gk], b

/
F ′[G′

1, ..., G
′
n]

a ⊗ b
/
Fσ[G/⊥]∇∇∇F ′σ[G/�]

(3)

where σ = MGU(A) is the most general unifier (MGU) of the set of the atoms
A = {G1, . . . , Gk, G

′
1, . . . , G

′
n} , G = G1σ. For every variable α in F or F ′, (Sbt(γ) = α)∩σ = ∅

⇒ Sig(α) = 1 in
F or F ′ iff Sig(α) = 1 in Fσ[G/⊥]∨F ′σ[G/�]. F is called positive and F’ is called negative

premise, G represents an occurrence of an atom. The expression Fσ[G/⊥]∇∇∇F ′σ[G/�] is the
resolvent of the premises on G.
and
(i) either G is selected by S in F ′, or else S(F ′) is empty, G is maximal in F ′, (ii) atom G is
maximal in F , and (iii) F does not contain a selected atom.

Lemma 1
Soundness of rGR

The inference rule rGR for FPL based on L�L is sound i.e. for every truth valuation D,

D(rsyn(A1, ..., An)) ≥ revl(D(A1), ...,D(An)) (4)

holds true.

Definition 8
Refutational resolution theorem prover
Refutational non-clausal resolution theorem prover for FPL (RRTPFPL) is the inference system
with the inference rule GRFPL and sound simplification rules for ⊥, � (standard equivalencies
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for logical constants). A refutational proof by definition 6 represents a proof of a formula G
(goal) from the set of special axioms N. It is assumed that Sig(α) = 1 for ∀α in F ∈ N ∪ ¬G
formula, every formula in a proof has no free variable and has no quantifier for a variable not
occurring in the formula.

Definition 9
Simplification rules for ∇∇∇,⇒⇒⇒

rs∇∇∇ :
a
/⊥∇∇∇A

a
/
A

and rs⇒⇒⇒ :
a
/�⇒⇒⇒ A

a
/
A

Lemma 2
Provability and refutation degree for GRFPL

T �a A
iff a =

∨{V al(w)| w is a refutational proof of A from LAx ∪ SAx}
Theorem 1
Completeness for fuzzy logic with rGR, rs∇∇∇, rs⇒⇒⇒ instead of rMP

Formal fuzzy theory, where rMP is replaced with rGR, rs∇∇∇, rs⇒⇒⇒, is complete i.e. for every A
from the set of formulas T �a A iff T |=a A.

4 Implementation and efficiency

The author also currently implements the non-clausal theorem prover into fuzzy logic and
logic as an extension of previous prover for FOL (GEneralized Resolution Deductive System -
GERDS) [4]. Experiments concerning prospective inference strategies can be performed with
this extension. The prover called Fuzzy Predicate Logic GEneralized Resolution Deductive
System - FPLGERDS provides standard interface for input (knowledge base and goals) and
output (proof sequence and results of fuzzy inference, statistics).

There are already several efficient strategies proposed by author (mainly Detection of Con-
sequent Formulas (DCF) adopted for the usage also in FPL). With these strategies the proving
engine can be implemented in ”real-life” applications since the complexity of theorem proving
in FPL is dimensionally harder than in FOL (the need to search for all possible proofs - we try
to find the best refutation degree). The DCF idea is to forbid the addition of a resolvent which
is a logical consequence of any previously added resolvent. For refutational theorem proving it
is a sound and complete strategy and it is emiprically very effective. Completeness of such a
strategy is also straight-forward in FOL:

(Rold � Rnew) ∧ (U,Rnew � ⊥) ⇒ (U,Rold � ⊥)

Example: Rnew = p(a), Rold = ∀x(p(x)), Rold � Rnew.
DCF could be implemented by the same procedures like General Resolution (we may utilize

self-resolution). Self-resolution has the same positive and negative premise and needs to resolve
all possible combinations of an atom. It uses the following scheme:
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Figure 1: Fuzzy Predicate Logic GEneralized Resolution Deductive System

Rold � Rnew ⇔ ¬(Rold → Rnew) � ⊥
Even the usage of this teachnique is a semidecidable problem, we can use time or step

limitation of the algorithm and it will not affect the completeness of the RRTPFOL.
Example: Rnew = p(a), Rold = ∀x(p(x)), ¬(∀x(p(x)) → p(a))
MGU: Sbt(x) = a, Res = ¬(⊥ → ⊥) ∨ ¬(� → �) ⇒ ⊥
We have proved that Rnew is a logical consequence of Rold.

In FPL we have to enrich the DCF procedure by the limitation on the provability degree. if
U �a Rold ∧ U �b Rnew ∧ b ≤ a then we can apply DCF. DCF Trivial check performs a symbolic
comparison of Rold and Rnew we use the same provability degree condition. In other cases we
have to add Rnew into the set of resolvents and we can apply ”DCF Kill” procedure. DCF Kill
searches for every Rold being a logical consequence of Rnew and if U �a Rold ∧ U �b Rnew ∧
b ≥ a then Kill Rold (resolvent is removed).

We will now show some efficiency results concerning many-valued logic both for Fuzzy
Predicate Logic. We have used the above mentioned application FPLGERDS and originally
developed DCF strategy for FPL. It is clear that inference in RRTPFPL and RRTPFDL on
general knowledge bases is a problem solved in exponential time. Nevertheless as we would
like to demonstrate the need to search for every possible proof (in contrast to the two-valued
logic) will not necessarily in particular cases lead to the inefficient theory. We have devised
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knowledge bases (KB) on the following typical problems related to the use of fuzzy logic.
We have performed experimental measurements concerning efficiency of the presented non-

clausal resolution principle and also DCF technique. This measurements were done using the
FPLGERDS application [8]. Special testing knowledge bases were prepared and several types
of inference were tested on a PC with standard Intel Pentium 4 processor as described below.

Fuzzy Logic redundancy-based inefficient knowledge bases

As it was shown above in the theorem proving example the problem of proof search is quite
different in FPL and FDL in comparison with the two-valued logic. We have to search for the
best refutation degree using refutational theorem proving in order to make sensible conclusions
from the inference process. It means we cannot accept the ”first successful” proof, but we
have to check ”all possible proofs” or we have to be sure that every omitted proof is ”worse”
that some another one. The presented DCF and DCF Kill technique belong to the third sort
of proof search strategies, i.e. they omit proofs that are really ”worse” than some another
(see the explication above). Proofs and formulas causing this could be called redundant proofs
and redundant formulas. Fuzzy logic makes this redundancy dimensionally harder since we
could produce not only equivalent formulas but also equivalent formulas of different evaluation
degree.

We have compared efficiency of the standard breadth-first search, linear search and
modified linear search (starting from every formula in knowledge base) and also combinations
with DCF and DCF-kill technique [8]. We have prepared knowledge bases of the size 120,
240, 360, 480 and 600 formulas. It has been compared the time and space efficiency on the
criterion of 2 redundancy levels. This level represents the number of redundant formulas to
which the formula is equivalent (including the original formula). For example the level 5 means
the knowledge base contain 5 equivalent redundant formulas for every formula (including the
formula itself). The basic possible state space search techniques and DCF heuristics and their
combinations are presented in the following tables.

Table 1: Proof search algorithms

Search method Description
Breadth B Level order generation, start - special axioms + goal
Linear L Resolvent ⇒ premise, start - goal
Modified-Linear M Resolvent ⇒ premise, start - goal + special axioms

We use standard state space search algorithms in the FPLGERDS application - Breadth-
first and Linear search. Breadth-first method searches for every possible resolvent from the
formulas of the level 0 (goal and special axioms). These resolvents form formulas of the level 1
and we try to combine them with all formulas of the same and lower level and continue by the
same procedure until no other non-redundant resolvent could be found. Linear search performs
depth-first search procedure, where every produced resolvent is used as one of the premises
in succeeding step of inference. The first produced resolvents arises from the goal formula.
Modified linear search method posses the same procedure as linear one, but it starts from goal
and also from all the special axioms.
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Table 2: DCF heuristics

DCF Method Description
Trivial T Exact symbolic comparison
DCF DC Potential resolvent is consequent (no addition)
DCF Kill DK DCF + remove all consequent resolvents

DCF methods for reduction of resolvent space are basically three. The simplest is trivial
DCF method, which detects redundant resolvent only by its exact symbolic comparison, i.e.
formulas are equivalent only if the are syntactically the same. Even it is a very rough method,
it is computationally very simple and forms necessary essential restriction for possibly infi-
nite inference process. The next method of DCF technique enables do detect the equivalency
of a formula (potential new resolvent) by the means described above. DCF Kill technique
additionally tries to remove every redundant resolvent from the set of resolvents.

Table 3: Inference strategies
Search DCF Code Description
Breadth Trivial BT Complete
Breadth DCF BDC Complete
Breadth DCF Kill BDK Complete
Mod. Linear Trivial MT Incomplete (+)
Mod. Linear DCF MDC Incomplete (+)
Mod. Linear DCF Kill MDK Incomplete (+)
Linear Trivial LT Incomplete
Linear DCF LDC Incomplete
Linear DCF Kill LDK Incomplete

We have built-up 9 combinations of inference strategies from the mentioned proof search and
DCF heuristics. They have different computational strength, i.e. their completeness is different
for various classes of formulas. Fully complete (as described above) for general formulas of
FPL and FDL are only breadth-first search combinations. Linear search strategies are not
complete even for two-valued logic and horn clauses. Modified linear search has generally bad
completeness results when an infinite loop is present in proofs, but for guarded knowledge bases
it can assure completeness preserving better space efficiency than breadth-first search.

We have tested presented inference strategies on the sample knowledge bases with redun-
dancy level 5 with 20, 40, 60, 80 and 100 groups of mutually redundant formulas (the total
number of formulas in knowledge base is 120, 240, 360, 480 and 600). At first we have tested
their time efficiency for inference process. As it could be observed from figure 2, the best re-
sults have LDK and LDC strategies. For simple guarded knowledge bases (not leading to an
infinite loop in proof search and where the goal itself assures the best refutation degree) these
two methods are very efficient. DCF strategies significantly reduces the proof search even in
comparison with LT strategy (standard), therefore the usage of any non-trivial DCF heuristics
is significant. Next important result concludes from the comparison of BDK and MDK, MDC
strategies. We can conclude that MDK and MDC strategies are relatively comparable to BDK
and moreover BDK preserves completeness for general knowledge bases.
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Figure 2: Time complexity for redundancy level 5 (seconds)
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Space complexity is even more significantly affected by the DCF heuristics. There is an
interesting comparison of trivial and non-trivial DCF heuristics. Even BDK strategy brings
significant reduction of resolvents amount, while LDK, LDC, MDK, MDC strategies have min-
imal necessary amount of kept resolvents during inference process. Performed experiments
shows the significance of originally developed DCF strategies in combination with standard
breadth-first search (important for general knowledge bases - BDK). We also outlined high
efficiency for linear search based strategies (mainly LDK). Even this strategy is not fully com-
plete and could be used only for guarded fragment of FDL, this problem is already known in
classical (two-valued) logic programming and automated theorem proving. We also use these
highly efficient linear search strategies, even they are not complete.

5 Conclusion, further research and applications

The Detection of Consequent Formulas algorithms family brings significant improvements in
time and space efficiency for the best proof search. We have shown results indicating specific
behavior of some combinations of the DCF and standard proof search (breadth-first and linear
search). DCF strategies (BDC, BDK) have interesting results even for fully general fuzzy
predicate logic with evaluated syntax, where the strategy makes the inference process practically
manageable (in contrast to unrestricted ”blind” proof-search). However it seems to be more
promising for practical applications to utilize incomplete strategies with high time efficiency
like LDK (even for large knowledge bases it has very short solving times). It conforms to
another successful practical applications in two-valued logic like logic programming or deductive
databases where we also use efficient incomplete strategies for fragments of fully general logics.

We have briefly shown some efficiency results for the presented automated theorem prover
and inference strategies. They show the significant reduction of time and space complexity for
the DCF technique. There is also prepared the experimental application FPLGERDS, which
is obtainable from URL:

http://www1.osu.cz/home/habibal/files/gerds.zip.

The package contains current version of the application, source codes, examples and docu-
mentation.

Acknowledgement

The authors have been partially supported by the project MSM6198898701 and 1M0572 of the
MSMT CR.

References

[1] BACHMAIR, L., GANZINGER, H. A theory of resolution. Technical report: Max-Planck-
Institut, 1997.

[2] BACHMAIR, L., GANZINGER, H. Resolution theorem proving. In Handbook of Auto-
mated Reasoning, MIT Press, 2001.

volume 4 (2011), number 3 103



Aplimat - Journal of Applied Mathematics

[3] DUKIĆ, N., AVDAGIĆ, Z. Fuzzy Functional Dependency and the Resolution Principle.
In Informatica, Vilnius: Lith. Acad. Sci. (IOSPRESS), 2005, Vol.16, No. 1, pp. 45 - 60,
2005.

[4] HABIBALLA, H. Non-clausal resolution - theory and practice. Research report: University
of Ostrava, 2000, http://www.volny.cz/habiballa/files/gerds.pdf
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[9] HÁJEK, P. Metamathematics of fuzzy logic. Kluwer Academic Publishers - Dordrecht,
2000.
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[11] NOVÁK, V., PERFILIEVA, I., MOČKOŘ, J. Mathematical principles of fuzzy logic.
Kluwer, 1999.

Current address

Habiballa Hashim, RNDr. PaedDr., PhD.
Institute for research and application of fuzzy modeling Science
University of Ostrava,
30.dubna 22, 70200 Ostrava, Czech Republic
e-mail: hashim@seznam.cz

104 volume 4 (2011), number 3



LINGUSTIC IF-THEN RULES FOR TIME SERIES PREDICTION

HABIBALLA Hashim, (CZ), PAVLISKA Viktor, (CZ)

Abstract. The article shows the system developed on University of Ostrava to provide
new and efficient methods for time series prediction. It is based on Logical deduction
through fuzzy lingustic rules and therefore it provide transparent predictions for following
analysis.
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1 Introduction

Time series prediction is an important task in many areas including economics, biology etc.
There are many standard methods to solve this task like Winter’s method for time series
prediction. These methods have one essential imperfection - they are not transparent. It
means if a prediction is produced it cannot be observed why and how such an result has been
obtained or such explication of results is described in hardly-readable mathematical relations.
We present a new method which overcomes this imperfection and it is based on already very
successful formalism of fuzzy linguistic IF-THEN rules presented and developing by the group
of Prof. Novak[1].

1.1 Fuzzy Linguistic Rules

The theory of linguistic term and variables is well-known approach in the fuzzy logic community.
It enables to work with rules containing terms of natural language like small or big and modifiers
like very, roughly etc. The rule interpretation is then done by logical deduction based on which
is based on fuzzy set theory and fuzzy logic to enable to deduce conclusions on the basis of
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imprecise description of the given situation using the linguistically formulated fuzzy IF-THEN
rules [1]. The usage of this theory within a frame of time series prediction lies in the learning of
these rules from the serie and then application to future (predicted) members of the serie. These
learning algorithms are already prepared within the LFLC software [1], which is intended to
perform logical deduction on linguistic rules. The core of the system serve also for the presented
application.

1.2 Linguistic descriptions and their elaboration

The theoretical background of LFLC lays in formal fuzzy logic in broader sense (FLb), which is
an extension of that in narrow sense (FLn) (for the detailed presentation of both logics see [2]).
The theory provides elaboration of that part of the semantics, which consists of the so called
evaluating and conditional linguistic expressions. The former are expressions such as “small,
roughly medium, very big”, etc. The latter are the well known fuzzy IF-THEN rules. These
are usually gathered into sets called linguistic descriptions which take the form

R1 := IF X is A1 THEN Y is B1

. . . . . . . . . . . . . . . . . . . . . . . . . .
Rm := IF X is Am THEN Y is Bm

where Aj,Bj are the mentioned evaluating linguistic expressions. They characterize property
of some features of objects, for example size, volume, force, strength, etc. Since usually we are
not interested in the concrete objects and their features, we replace them by some real numbers
which are then represented by the variables X and Y . Thus, values of X and Y represent, e.g.
values of temperature, pressure, price, etc. The linguistic expression of the form ‘X is A’ is
called the evaluating linguistic predication.

Fuzzy IF-THEN rules serve as a basis for approximate reasoning, which is a method for
finding a conclusion on the basis of the imprecise initial information concentrated in the form
of linguistic description and some new information. There are two fundamental approximate
reasoning methods:

(a) Linguistically based fuzzy logical deduction, i.e. finding a formal conclusion when the fuzzy
IF-THEN rules are treated as linguistically characterized logical implications.

(b) Fuzzy approximation of a function, i.e. finding a function which approximates some only
imprecisely known function, whose course is estimated using the linguistic description.

The interpretation of the linguistic description significantly depends on the above chosen
method.

The usual implementations of approximate reasoning focuses on the method (b). Our
concept of LFLC implements both methods but its main strength lays in the method (a).

1.3 Fuzzy approximation of a function

In this case, each evaluating predication ‘X is A’ is assigned some formula A(x) of predicate
fuzzy logic. The whole linguistic description is then assigned one of two special formulas called
the disjunctive and conjunctive normal form.
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The disjunctive normal form is the formula

DNF(x, y) :=
m∨

j=1

(Aj(x)∧∧∧ Bj(y)). (1)

In this case, each rule is assigned a conjunction of formulas Aj(x) and Bj(y) and all of them
are joined by disjunction. We speak also about functional interpretation of the linguistic de-
scription.

The alternative possibility is the conjunctive normal form

CNF(x, y) :=
m∧

j=1

(Aj(x) ⇒⇒⇒ Bj(y)). (2)

In this case, each rule is assigned an implication between the formulas Aj(x) and Bj(y) and
all of them are joined by conjunction. We speak about logical interpretation of the linguistic
description. Recall, however, that the main goal is still fuzzy approximation of a function.

1.4 Linguistically based fuzzy logical deduction

The most specific feature of LFLC is the possibility to realize a fuzzy logical deduction when
the rules are interpreted as linguistically characterized logical implications.

1.4.1 Linguistic aspect

In the concept of LFLC, we deal with the mentioned evaluating linguistic expressions (possibly
with signs) which have the general form

〈linguistic modifier〉〈atomic term〉 (3)

where 〈atomic term〉 is one of the words “small, medium, big”, or “zero” (possibly also arbitrary
symmetric fuzzy number) and 〈linguistic modifier〉 is an intensifying adverb such as “very,
roughly”, etc.

The linguistic modifiers in (3) are of two basic kinds, namely those with narrowing and
widening effect. Narrowing modifiers are, for example, “extremely, significantly, very” and
widening ones are “more or less, roughly, quite roughly, very roughly”. We will take these
modifiers as canonical. Note that narrowing modifiers make the meaning of the whole expression
more precise while widening ones do the opposite. Thus, “very small” is more precise than
“small”, which, on the other hand, is more precise than “roughly small”.

The meaning of each linguistic expression A has two constituents: the intension Int(A) and
extension Ext(A) in some model (this is often called the possible world).

Intension of the linguistic expression is a formal characterization of the property denoted
by it on the level of formal syntax. It can be interpreted as a fuzzy set of special formulas†).

†)They have the form A := {at
/
Ax[t] | t ∈ M} where A(x) is a formula, M is a set of constants and at is an

evaluation of the instance Ax[t]. For the details — see [1].
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However, it is a rather abstract concept, which in concrete situation (context) determines some
fuzzy set of elements. Mathematically this means that a model w is given whose support is
some set U (taken usually as a closed interval of real numbers). Then the extension of A is
some fuzzy set of elements Extw(A) ⊂∼ U , which is determined by its intension Int(A). Note

that for each concrete situation, different model should be considered. However, intension is
still the same.

Note that the concepts of intension and extension formalizes the following intuitive situation:
we can speak about high temperature, high pressure, high tree, etc. But high temperature may
mean 100◦C at home or 1000◦C in metal melting process, and similarly in other cases. This
cannot be satisfactorily formalized without the mentioned concepts.

In the terminology used in LFLC, we speak about linguistic context in which the given
evaluating expression is used since in the practice, it requires setting the minimal and maximal
possible values which can be attained by the used variables.

Let us stress that the extensions of the evaluating expressions are fuzzy sets of the form
of the so called S- and Π-curves, as is depicted on Figure 1. More on the formal theory of
evaluating linguistic expressions can be found in [1].

1.4.2 Fuzzy logical deduction

Unlike fuzzy approximation, where we deal with fuzzy sets in a model (i.e. on the level of se-
mantics), logical deduction must proceed on syntax. Instead of the detailed formal description,
we will demonstrate the behaviour of the logical deduction on an example.

Let us consider a linguistic description consisting of two rules:

R1 := IF X is small AND Y is small THEN Z is big

R2 := IF X is big AND Y is big THEN Z is small.

These rules are assigned intensions Int(R1), Int(R2), which can schematically be written as

Int(R1) =(Smx ∧∧∧ Smy) ⇒⇒⇒ Biz (4)

Int(R2) =(Bix ∧∧∧ Biy) ⇒⇒⇒ Smz. (5)

Furthermore, let X,Y, Z be interpreted in a model which will consist of three sets U = V =
W = [0, 1]. Then small values are some values around 0.3 (and smaller) and big ones some
values around 0.7 (and bigger). Of course, given the input, e.g. X = 0.3 and Y = 0.25 then we
expect the result Z ≈ 0.7 due to the rule R1. Similarly, for X = 0.75 and Y = 0.8 we expect
the result Z ≈ 0.25 due to the rule R2.

The value 0.3 is represented in the formal system by a certain intension Sm′
x and similarly,

the value 0.25 is represented by Sm′
y.

Then the inference rule of modus ponens is applied on Sm′
x, Sm′

y and the implication (4).
The result is the intension Bi′z. The latter is to be interpreted as some fuzzy set B′ ⊂∼ W .

To obtain one concrete value, the resulting fuzzy set B′ should further be defuzzified. How-
ever, we deal with evaluating linguistic expressions, whose interpretation has always one of the
three possible forms depicted on Figure 1. Therefore, standard defuzzification methods such
as COG do not work properly. Instead, we have developed a special method, which we call
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Figure 1: Form of fuzzy sets corresponding to the meaning of the evaluating linguistic expres-
sions and the DEE defuzzification.

Defuzzification of Evaluating Expressions (DEE). This method classifies first the type of the
membership function and then decides the defuzzification, as is depicted on Figure 1. There
are two versions of the DEE method, namely simple which first classifies the resulting fuzzy
sets in types “small”, “medium” and “big” and then defuzzifies it using Last of Maxima, Cen-
ter of Gravity or First of Maxima methods, respectively. The second one uses a sophisticated
algorithm to choose a value close to these dependingly on the specific shape of the membership
function.

In our case, when the input is X = 0.3 and Y = 0.25 then both values correspond to “small”
and thus, with respect to the rule R1, the resulting linguistic corresponds to “big” and thus,
after its interpretation in the model and defuzzification using the DEE method, we obtain the
result Z ≈ 0.7, i.e. a value being intuitively big. In other words, we obtain the result which,
on the basis of the form of the given rules, should be expected. Similarly, the input values
X = 0.75 and Y = 0.8 would lead to the value Z ≈ 0.25 due to the rule R2.

To summarize: in the case of fuzzy approximation, we form the special formulas DNF or
CNF on the level of syntax, interpret them in some model and then find the approximation
on the level of semantics only. In the case of linguistically based fuzzy logical deduction we
interpret the rules on the level of syntax, transform measurement also to this level, realize
formal logical deduction and then interpret the result in some model.

2 Time Series Prediction Application

The linguistic inference is used to predict future values and the main advantage lies in explicit
statement of the used rules for prediction. This makes the principle unique above standard
methods. The IF-THEN rules are in the following form according to the theory stated above.

1 me vr sm −→ ze
2 qr bi me −→ ze
3 -ex bi qr bi −→ ze
4 sm -ex bi −→ ze
5 sm sm −→ ze
6 me sm −→ ze
7 -sm me −→ ve sm
8 ex sm -sm −→ sm
9 -ra sm ex sm −→ ml me
10 ml me -ra sm −→ ml me
11 -vr bi ml me −→ qr bi
12 ml me -vr bi −→ ml me
13 -ve bi ml me −→ ml me
14 ro bi -ve bi −→ ml me
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3 Conclusion

The presented method is unique approach to predict time series. It enables to see what rules
were used for prediction, which other methods cannot provide. The approach is moreover
implemented like a software LFLForecaster, that is described in separated article.
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1 Reliability of a system of mutually independent elements 
 
A collection of objects used to carry out required activities is usually referred to as a system. When 
analysed, complicated systems can be partitioned into functional units (subsystems) simpler in 
terms of the activities in question with these being further decomposed down to indivisible parts 
called system elements. If the required activity is represented by the reliability of elements, we call 
this a reliability system [3]. 

 
The structure of a reliability system decomposed into elements is most often described by what 

is called a flow chart. Further we assume a two-mode model with the system (an element) being 
either in a failure-free mode (logical value of 1) or in a failure mode (logical value of 0). If 
necessary, we can identify the system denotation with a logical variable A  marking its mode with 
individual elements denoted by 1, , nA A . The system structure can also be represented by a 

directed graph with the arcs of the graph corresponding to the system elements and the nodes to the 
connections of elements. 

 
If the mode of element kA  does not influence the mode of element lA  and vice versa  k l , we 

say that the elements kA , lA  are independent. If the mode of a subset of elements has no effect on 
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the mode of any other subset of elements of the same system and the two sets are disjoint, we say 
that that the system elements are mutually independent. 

 
Generally, the mode of a (system) element depends on time t so that it is a function 

( )A t assuming the values 1 and 0 with  0,t   and (0) 1A  . We assume the mode ( )A t  passing 

from 1 to 0 (not reversely) meaning that this is a model without renewal. Next we assume that the 
time of failure-free operation is a non-negative random variable T and its reliability function 
(survival function or reliability) is    ( ) ( ) 1R t P T t P A t    . With these assumptions, the 

mode of an element (system) is a random event.  
 
Reliability systems with elements iA , 1, ,i n   used most frequently: 

1. Serial system 1S nA A A   . 

2. Parallel system 1P nA A A   . 

3. Combined system KA  formed by serial and parallel subsystems repeatedly connected in 

series or in parallel. 
4. k of n system /k nA  is in failure-free mode if at least k elements of n elements of iA  is in 

failure-free mode ( k n ). A special case of this is the serial system ( k n ) and the 
parallel system ( 1k  ).  

Here  denotes the logical conjunction and  the logical disjunction of element modes correspon-

ding to the operations of intersection  and union  of random events.  
 
 
2 Interval reliability 
 
Definition 2.1. Let   2, , , ( , )a b a b a b � be an interval number [1], then the following arithmetic 

operations with interval numbers are defined: 
 

     
     
       
         

, , , ,

, , , ,

, , min , , , ,max , , , ,

, / , , 1/ ,1/  pro 0 , .

a b c d a c b d

a b c d a d b c

a b c d ac ad bc bd ac ad bc bd

a b c d a b d c c d

   

   

    
  

 

 

For a   we   put  ,a a a . If  a  0, we write  , 0a b   etc. 

 
Theorem 2.1. If  J, K, L, M  are interval numbers, we have: 
 

   

, ( ) ( ) ,

, ( ) ( ) ,

0 , 1 ,

( ) .

J K K J J K L J K L

J K K J J K L J K L

J J J J

J K L J K J L

       
       
   

     
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Specifically for 0K L  , we have 

( )J K L J K J L      . 
 
 If  and J L K M  , then 
 

,

,

,

/ / , if  0 .

J K L M

J K L M

J K L M

J K L M M

  
  
  

 

 

 
For  , 0J a b  ,  , 0K c d  , we have  ,J K ac bd  , and for  , 0J a b  ,  , 0K c d  , 

we have  ,J K bd ac  . 

 
Proof. See [1]. � 
 
Definition 2.2. Let  1,..., nf x x  be a real function and 1,..., nI I  interval numbers, then by an 

interval value of this function in  1,..., nI I , we mean the interval number 

 

   1 1min ,..., ,max ,...,n nf x x f x x    

 
with  1 1,..., n nx x I I    speaking about an interval function  1,..., nf I I . 

 
Remark 2.1. If  1,..., nf x x  is increasing for each of its independent variables, then evidently 

 

   1 1min ,..., ,max ,...,n nf x x f x x   =    1 1min ,...,min , max ,...,maxn nf I I f I I   . 

 
Definition 2.3. The interval reliability of an element or system at time  0,t   is defined as an 

interval number    1 2,R t R t    with    1 2,R t R t  being the reliabilities (probabilities of a failure-

free mode) of this element or system at time t. 
 
Theorem 2.2. Let the elements iA  of a reliability system be mutually independent with interval 

reliabilities    1 2,i iR t R t   , 1, ,i n  . Then the following is true: 

 
1. The interval reliability of a serial system 1S nA A A    is 

 

       1 2 1 2
1 1

, ,
n n

i i
i i

R t R t R t R t
 

 
    
 
  . 
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2. The interval reliability of a parallel system 1P nA A A    is 
 

         1 2 1 2
1 1

, 1 1 ,1 1
n n

i i
i i

R t R t R t R t
 

 
        
 
  . 

 

3. The interval reliability of a combined system KA with each element iA , 1, ,i n   occurring 

in exactly one (arbitrary) subsystem can be obtained by gradually calculating the interval 
reliabilities of the serial and parallel subsystems using the equalities under 1 and 2. 

 
4. The interval reliability of a k of n system /k nA  is 

   1 2,R t R t     

 
 

           
 

1 1 1 1

1 1

1 1 1 1 2 2 2 2
,..., ,...,

1 1 , 1 1
j j n j j n

j j

n n

i i i i i i i i
j k j ki i i i

R t R R R t R t R R R t
 

 

 
     
  
        

 where  1,... ji i  are all the class j combinations of the set of indices  1,..., n . 

 
Proof. Assertions are a direct consequence of the reliabilities of the systems being increasing 
functions of the reliabilities of individual elements [2]. � 
 
Example 2.1. The following simple problems were solved in Excel using the list method. In the 
problem description, the interval estimates of the elements are defined by the minimal and maximal 
values  MIN, MAX  with the list containing, rather than the disjoint chains of the conjunctions of 

the possible system modes, directly the corresponding products of their probabilities expressed in 
terms of the reliabilities R1, R2, R3 of mutually independent elements. The interval reliabilities of 
the chains were calculated using the interval arithmetic, more specifically, as the product of interval 
numbers putting, however,    1 , 1 ,1a b a b    . This corresponds to the fact that the reliability of 

each system in question is an increasing function of each of its arguments, that is, the reliabilities of 
the given system elements. Table 2.1 and Table 2.2 record the setting and computed results.   
 

Table 2.1. Definition and list for Excel 

Elements 
Relia- 
bility 

MIN MAX j List MIN MAX 

A1 R1 0.4 0.8 1 R1 R2 R3 0.168 0.504 
A2 R2 0.7 0.9 2 (1 - R1) R2 R3 0.252 0.126 
A3 R3 0.6 0.7 3 R1 (1 - R2) R3 0.072 0.056 

    4 R1 R2 (1 - R3) 0.112 0.216 
    5 (1 - R1) (1 - R2) R3 0.108 0.014 
    6 (1 - R1) R2 (1 - R3) 0.168 0.054 
    7 R1 (1 - R2) (1 - R3) 0.048 0.024 
    8 (1 - R1) (1 - R2) (1 - R3) 0.072 0.006 
     Sum 1.000 1.000 
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Table 2.2. Computed interval reliability of systems 

  Serial system S:     j Mode S MIN MAX 

      1 1 0.168 0.504 

      2 0 0 0 
  

 

    3 0 0 0 

      4 0 0 0 

      5 0 0 0 

      6 0 0 0 

      7 0 0 0 

      8 0 0 0 

          Reliability R(S) 0.168 0.504 

   Parallel system P:     j Mode P MIN MAX 
   

 

   1 1 0.168 0.504 

      2 1 0.252 0.126 

      3 1 0.072 0.056 

      4 1 0.112 0.216 

      5 1 0.108 0.014 

      6 1 0.168 0.054 

      7 1 0.048 0.024 

      8 0 0 0 

          Reliability R(P) 0.928 0.994 

  Combined system K1:     j Mode K1 MIN MAX 

      1 1 0.168 0.504 
  

 

    2 0 0 0 

      3 1 0.072 0.056 

      4 1 0.112 0.216 

      5 0 0 0 

      6 0 0 0 

      7 0 0 0 

      8 0 0 0 

          Reliability R(K1) 0.352 0.776 
 

A1 A2 A3

A1

A3

A2
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Table 2.2. Computed interval reliability of systems (continued) 
  Combined system K2:     j Mode K2 MIN MAX 

      1 1 0.168 0.504 

  
 

    2 0 0 0 

      3 0 0 0 

      4 1 0.112 0.216 

      5 1 0.108 0.014 

      6 0 0 0 

      7 0 0 0 

      8 0 0 0 

          Reliability R(K2) 0.388 0.734 

  "2 of 3" system (i.e., at least 2 of 3) A2/3: j Mode A2/3 MIN MAX 

  
 

    1 1 0.168 0.504 
      2 1 0.252 0.126 

      3 1 0.072 0.056 

      4 1 0.112 0.216 

      5 0 0 0 

      6 0 0 0 

      7 0 0 0 

      8 0 0 0 

      
[1] Relia

bility 
R(A2/3) 0.604 0.902 

 
A direct calculation of the interval reliability of a combined system by can, however, only be 

used for not very large reliability systems. Then the following algorithm may be applied. 
 
 
3 IJK – algorithm to calculate the interval reliability of a combined system 
 
To calculate the interval reliability of a combined system, a JK-algorithm calculating the reliability 
of the system [4] and combining a list method and a method of paths was modified. 

 
A list method sets up a method of all the logical events in a system to calculate the system 

reliability using disjoint random events. In our case, a path in a directed graph is defined as a 
sequence of arcs corresponding to system elements that connect nodes between the input and output 
graph nodes.  

 
Suppose that a reliability system A  is expressed by means of a simple acyclic directed graph 

with a neighbourhood matrix   , 1

m

kl k l
a


A  where exactly one arc kla  from node k to node l 

corresponds to a system element iA . If the nodes k and l are connected with an arc, we put 1kla   

with 0kla   otherwise. If the system graph is not simple (the system contains a parallel subsystem), 
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it can be transformed into a simple one using, for example, arc splitting [4]. Denoting by 1 the 
input node and by m  the output node of the graph, we see that  1 1 1 / 2m n m m     . 

 
To determine the interval reliability of a system A  of mutually independent elements, we 

assume that the elements of a system iA  have interval reliabilities    1 2,i iR t R t   , 1,...,i n . The 

interval reliability of a combined system can be determined for  0,t    by implementing the 

steps of what is referred to as an IJK  algorithm: 
 
1. Generate a list of all possible modes of the elements of a given system in the form of a type 

 2 ,n n  matrix V with its rows formed by all class n variations with repetition of the two-

element set {0;1} (they can be viewed as binary numbers from  0 to 2 1n  ). 
2. For each variation of the modes of system elements, calculate the mode of the system 

 1sgnj mS D , 1,..., 2nj   using the algebraic complement 1mD  of the matrix D = E A  

where E denotes the unit matrix and substituting the value of the mode of the corresponding 
element iA  from matrix V for entry kla  of the neighbourhood matrix A. 

3. Determine the interval reliability of the system    1 2,R t R t    at time t using the interval 

reliabilities    1 2,i iR t R t    of elements 1,...,i n , and system modes  1sgnj mS D , 

1,..., 2nj   using the equality 
 

   1 2,R t R t     

       
2 2

1 1

1 1 2 2
1 11 1

1 ( ) ( ) , 1 ( ) ( )
n n

i i i i
n n

A A A A

j i i j i i
j ji i

S R t R t S R t R t
 

  

                    
   , 

  
 putting 00 1 . 

 
The interval reliability of the system thus calculated can be used to calculate further interval 

functional and numeric characteristics of the system: distribution function, probability density, 
failure intensity, mean time to failure, quantiles etc. 
 
 
4 Conclusion 
 
If the estimators of the reliability of system elements are expert ones or based on experience, there 
is no need to be concerned too much with the significance or weight of an interval estimator of the 
system reliability. If, however, the interval estimators of the reliability of mutually independent 
elements iA  have confidence levels (statistical reliabilities) 1 i , 1,...,i n , then the confidence 

level of the interval estimator of the system reliability and of the system's other functional and 

numeric reliability characteristics is  
1

1
n

i
i




 . Specifically, for elements with identical confidence 

level 1  , the confidence level of the system interval estimator is  1
n

 . Thus, if the 
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confidence level of the interval estimator of the system reliability (and other characteristics of the 
system) is to be equal to 1  , the confidence level of the interval estimator of the reliability of 

each element needs to be chosen as  1/
1 1

n    . Table 4.1 contains the representative values 

of confidence level. 
 
Table 4.1. Confidence level *1   of element 

n  
1   

n  
1   

0.95 0.99 0.95 0.99 

1 0.9500000 0.9900000 10 0.9948838 0.9989955 

2 0.9746794 0.9949874 50 0.9989747 0.9997990 

5 0.9897938 0.9979920 100 0.9994872 0.9998995 
 
Since 1 1     for 1n  , the determining of the required confidence level of the interval 
estimator of the system reliability requires a higher confidence level of the interval estimator of 
each element. This, in turn, leads to an increase in the length of the interval estimate of the entire 
system. 
  

The calculation illustrated in section 2 concerns the systems with an increasing reliability with 
respect to each system element. In the event of an "unnatural" reliability system with the system 
reliability decreasing as the reliability of an element increases, the resulting interval reliability of 
the system can be obtained by some of the optimization methods. This actually involves finding the 
absolute minimum and maximum of a certain multilinear (polynomial) function on the Cartesian 
product (hyperblock) of the element reliabilities. The IJK-algorithm described in section 3 is a 
special variant of the calculation of the fuzzy reliability of a combined system using what is referred 
to as the FJK – algorithm [5]. A computer program [6] for this algorithm was written also 
calculating the numeric values of the interval reliability function of a combined system with fuzzy 
Weibull probability distribution as well as the system's further interval characteristics from defined 
or estimated interval reliability functions of mutually independent system elements. 
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Abstract. This paper presents a comparison of two methods for time series prediction, LFLC 
(Linguistic Fuzzy Logic Controller) and FIS (Fuzzy Interface System). It is essential that both are 
applied to the time series prediction of market development. It is very difficult to predict the market 
behavior because the overall trend is determined by many factors and unforeseen circumstances. The 
main experiment of this paper is to compare results of prediction of two different methods of ranking 
fuzzy theory, the challenge is to create a forecast of the stock market. 
 
Key words. Fuzzy theory, prediction, FIS, LFLC, linguistic rules. 
 
Mathematics Subject Classification:  Primary 93C42, 37M10  ; Secondary 91F20. 

 
 
1 Stock Market Forecast 

 
Various methods can be used for time series prediction. In addition to traditional methods, such as 
Box-Jenkins methodology, we can use neural networks, genetic algorithms or fuzzy logic. 
Algorithmic effort prediction models are limited by their inability to cope with uncertainties. Lots 
of researchers have been involved in the topic of fuzzy logic prediction [2], [3], [4], [5]. In this 
paper, we present a software prediction based on an appropriate combination of two fuzzy logic 
approaches, e.g. LFLC (Linguistic Fuzzy Logic Controller) and FIS (Fuzzy Interface System). 
 
Time series analysis and prediction is an important task that can be used in many areas of practice. 
The task of getting the best prediction to the given series may bring interesting engineering 
applications in a wide range of areas like economics, biology or industry. Sometimes time series 
analysis and prediction is performed using chaos theory. Economic systems are complex and may 
be described by deterministic or stochastic models. The discovery that simple non-linear systems 
can show complex and chaotic dynamics has attracted some economists to work in this field. It is 
well known that chaotic time series are not long-term predictable due to their sensitive dependence 
on initial values. However, it is short-term predictable and prediction of chaotic time series is very 
important in real-world applications such as cash-flow forecasting. Based on the reconstructed state 
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space, one may introduce various approaches for prediction of chaotic time series. Market systems 
appear to be chaotic. One of the essential characteristics of a chaotic system is its extreme 
sensitivity to initial conditions. A tiny change in values at the beginning of the time series produces 
drastic changes in behavior. However, it is obvious that financial markets do not exhibit such 
extreme sensitivity to initial conditions. For example [4], stocks are sold or bought based on their 
prices. The price depends on how much has been bought or sold. The feedback loop has both 
positive and negative effects. The law of supply and demand implies a negative feedback loop, 
because the higher the price, the lower the demand, which, in fact, causes a lower price in the 
future. However, a parallel speculation mechanism implies a positive feedback loop, because an 
increasing price makes an assumption that the price will increase in the future and thus motivate the 
traders to buy more stocks. As we do not know the delay the between these two effects we are not 
able to predict anything well. These nonlinear effects are common in the markets. Nevertheless, it is 
fair to say that the markets are not purely chaotic. Although a chaotic system is a collection of 
orderly, simple behaviors, modeling the market has turned out to be more difficult than anticipated. 
The problem is that chaotic systems can be unusually flexible and rapidly switch between their 
many different behaviors. One way to isolate these individual behaviors of the market might lie in a 
presumption that when the market is perturbed in just the right way (e.g. a large drop in price), it 
would exhibit one of its many regular behaviors for a short time. In the meantime, constructing 
leading indicators is difficult, that is why a forecast horizon for any market time series is limited. 
The only possibility we can do with such a system is to adapt its behavior as quickly as possible.  
 
 
2 Linguistic Fuzzy Logic Controller 

 
This chapter describes a tool that has been created at the Institute for Research and Applications of 
Fuzzy Modeling (IRAFM) at the University of Ostrava. This is a really a really powerful 
application giving good results in some cases. The usage of this tool within the frame of time series 
prediction lies in learning linguistic rules from the series and then application to future predicted 
members of the series. These leasing algorithms are already prepared within the LFLC (Linguistic 
Fuzzy Logic Controller) software [5], which is intended to perform logical deduction on linguistic 
rules. The core of the system also serves for the presented application.  
 
LFLC is specialized software (Fig.1), which is based on deep results obtained in formal theory of 
fuzzy logic. It makes it possible to deduce conclusions on the basis of imprecise description of the 
given situation using fuzzy IF-THEN rules (1). The rules are interpreted either as fuzzy relations or 
they can be taken as genuine linguistic expressions such as small, very large, medium etc. The rule 
interpretation is then done by logical deduction based on the fuzzy set theory and fuzzy logic to 
enable to deduce conclusions on the basis of imprecise description of the given situation using 
linguistically formulated fuzzy IF-THEN rules [5]. 
 
The theory of linguistic term and variables is a well-known approach in the fuzzy logic community.  
 
The fuzzy IF – THEN rules are usually put together to form linguistic descriptions. 
 

    (1) 

R1 := IF X1 is A11 AND ... AND Xn is A1n THEN Y is B1 
.............................................................................................  
Rm:= IF X1 is Am1 AND  ... AND Xn is Amn THEN Y is Bm 
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Figure 1.  LFLC 
 
 
3 Fuzzy Interface System  
 
This chapter presents Fuzzy Inference System (FIS) that is included into Matlab - Fuzzy Logic 
Toolbox designed for time series prediction. FIS is based on the concepts of fuzzy set and fuzzy 
relations, which were defined by Lotfi A. Zadeh in 1965. Fuzzy sets generalize classical sets. Fuzzy 
Logic Toolbox contains Fuzzy Interface System (FIS) and allows working with fuzzy sets. It 
discusses the appropriate choice and use of the FIS (Sugeno type) for given time series prediction 
[1]. 
 
Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets introduce an extension 
of the classical notion of a set. In the classical set theory, the membership of elements in a set is 
assessed in binary terms according to a bivalent condition - an element either belongs (full 
membership in the set) or does not belong to the set (no membership in the set). A fuzzy set is a set 
which in addition to full or no membership allows partial membership. This means that the element 
belongs to the set with a certain degree of competence - level of competence. Function that assigns 
to each element of the universe is called the membership degree of membership functions. Given 
the classical set theory the degree of membership takes values in the range 0, 1. 
 
Function A is the membership functions of the fuzzy set A. Each element Xx  assigns an 

element   1;0xA  , which is called degree of membership of element x in fuzzy set A. If 

  0xA  then x does not belong to fuzzy set A and if   1xA  then x belongs to fuzzy set A.  If 

  10  xA  then x partially belongs to the fuzzy set A. Formal registration of a fuzzy set is the 
following (2): 
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 








i

iA
x

xA 
 
for ix  (2) 

 

There are more types of FIS. To solve our problem, we used FIS type P: u = R (e), where output 
values depend only on the size of the input values. The shape of the rules distinguishes between the 
FIS type: Mamdani and Sugeno. Mamdani FIS rules are described exclusively by means of fuzzy 
sets. To define the FIS we need to determine the following [1]: 
 

- Number of the input variables (n) 
- For each of them to determine the number and shape of the predefined input values that can be 

considered as model inputs 
- Number of the output variables (m) 
- For each of them to determine the predefined output value 

 
Input and output values (which are considered in the form of fuzzy sets) are defined in the FIS rules 
follows (3). 

   (3) 
 

Each rule determines the relationship between the selected input and output values. FIS can be 
regarded as fuzzy relations. When using FIS, input values are compared with the predefined input 
values. Based on this comparison and by FIS rules, we get the shape of the FIS output fuzzy sets 
[1]. Parameters that most affect the quality of the result are input variables, therefore very often 
used for debugging the matrix (4) that is used to create a language of values, rules, and to debug the 
FIS. 
 
 
 

(4) 
 
 
 
 
4 Comparative experiments 
 
Time series stock market development activities of company Ebay Corp. has been used in our 
prediction experiments. Data was downloaded from [http://www.forexrate.co.uk/historydates]. 
This is a 100-week data set depending on the volume, (see Fig. 2), and its following 20-week 
prediction. Results are reported in two different approaches that were compared mutually.  
 
It is volume, after price, which is one of the most commonly quoted data points related to the stock 
market. Reflecting the overall activity in the stock or market, volume is the business of the market 
itself: buying and selling of shares. As such, volume is an important indicator for traders in 
analyzing market activity and planning strategy. 
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Figure 2. 100-week progress 
 
We used the Sugeno type FIS for predicting time series volume indicators. FIS has been designed to 
predict one subsequent value on the basis of previous values. The requirement was to forecast the 
next 20 values. For 100 values were tuned Fuzzy Inference System as it was carried out using 20 
projections. Clustering methods were used for week values in order to find a suitable base of fuzzy 
rules. There were approximately 20 estimates carried out on the data with using MAPE to select the 
most appropriate estimate to real values. The results are compared using MAPE (5), which gives a 
deviation of the predicted course from the real one. 
 

   
1

1 ( abs(  ) )
K

h h h
h

MAPE  p  - r rK


   
 
  (5) 

 

 
 

Figure 3. Comparison of prediction methods 
 
LFLC predicts the development of series with MAPE = 0.19 and the FIS did not go for anything 
less and MAPE = 0.21 (Fig 3).  
 
5 Conclusion 
 
Our comparison is based on fuzzy technology and it will provide a very interesting look at the 
different possibilities of prediction. The aim of the article was to use FIS and LFLC methods based 
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on fuzzy logic to make difficult time series prediction of stock prices. Despite their different 
approaches, both methods show their ability to predict unusually large stock market development  
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ON AGGREGATION OF L-FUZZY REAL NUMBERS

ORLOVS Pavels, (LV)

Abstract. The paper is devoted to a general aggregation operator acting on L-fuzzy
real numbers. The aim of our research is to analyze properties of a general aggregation
operator depending on properties of the ordinary aggregation operator and the t-norm,
which is used in the extension method. By using aggregation approach we describe some
t-norm based operations with L-fuzzy real numbers and investigate their properties.
Key words and phrases. L-fuzzy real numbers, aggregation operator, T -extension.

Mathematics Subject Classification. 94D05, 03E72

1 Introduction

Aggregation of several input values into a single output value is an important tool of mathemat-
ics, physics, as well as of engineering, economical, social and other sciences. As the widely used
examples of aggregation operators we can mention arithmetic and geometric mean, minimum
and maximum operators, t-norms and others (see e.g. [4],[6]). The main object of our interest
is an aggregation operator acting on non-negative L-fuzzy real numbers.

Our paper deals with a notion of L-fuzzy real numbers introduced by B. Hutton [2]. B. Hut-
ton defined L-fuzzy numbers in the case, when L is the unit interval [0, 1], but later some other
authors ([7],[8],[9]) developed and extended his idea.

The notion of a general aggregation operator acting on fuzzy structures was introduced by
A. Takaci in [3]. General aggregation operator is defined by using a t-norm T as a T -extension
of an ordinary aggregation operator. The aim of our research is to analyze properties of the
general aggregation operator Ã acting on L-fuzzy real numbers depending on properties of the
ordinary aggregation operator and the t-norm. In particular we consider such properties as
associativity, symmetry, idempotence, existence of a neutral element. By using the extended
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aggregation operator we consider t-norm based operations with L-fuzzy real numbers such as
addition, maximum, minimum and investigate their properties. Initial results on this topic
were presented at the conference FSTA in 2010 in Slovakia.

2 L-fuzzy real numbers

Let L = (L,∧,∨, 0L, 1L) be a completely distributive lattice, equiped with a t-norm T , where
0L an 1L are the least and the greatest elements of L.

Definition 2.1 An L-fuzzy real number is a function z : R → L such that

(N1) z is non-increasing: x1 ≥ x2 =⇒ z(x1) ≤ z(x2);

(N2) z is bounded:
∧
x

z(x) = 0L,
∨
x

z(x) = 1L;

(N3) z is left semi-continuous:
∧
t<x

z(t) = z(x).

The set of all L-fuzzy real numbers is called the L-fuzzy real line and it is denoted by R(L).
In this paper we consider non-negative L-fuzzy real line R+(L) = {z | z(0) = 1L, z ∈ R(L)},
as well as extended non-negative L-fuzzy real line R+(L) = R+(L) ∪ {1̃}, where 1̃ ≡ 1L. We
denote the minimal element of R+(L) by

θ̃(x) =

{
1L, x ≤ 0,

0L, x > 0.

Operations with L-fuzzy real numbers such as addition ⊕T and multiplication by a positive
real number k ∈ R+ are defined as following:

(z1 ⊕T . . . ⊕T zn)(x) =
∨

x=x1+...+xn

T (z1(x1), . . . , zn(xn)) and kz(x) = z
(x

k

)
, k > 0.

3 Aggregation operator

We start with the classical notion of an aggregation operator [4],[6]. Let us denote I = [0, 1]
and consider the following definition.

Definition 3.1 A mapping A :
⋃

n I
n → I is called an aggregation operator if the following

conditions hold:

(A1) A(0, . . . , 0) = 0;

(A2) A(1, . . . , 1) = 1;
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(A3) ∀x1, . . . , xn, y1, . . . , yn ∈ I : xi ≤ yi, i = 1, . . . , n =⇒ A(x1, . . . , xn) ≤ A(y1, . . . , yn).

Conditions (A1) and (A2) are called boundary conditions of A, but (A3) means the mono-
tonicity of A. One can consider a case, when instead of I an arbitrary closed interval [a, b] ⊂
[−∞, +∞] is used.

Next we define a general aggregation operator Ã acting on LX , where LX is the set of all
L-fuzzy subsets of a set X [3]. Let P1, P2, . . . , Pn are L-sets, i.e. Pi : X → L, i = 1, . . . , n. We
denote the order on LX by �, but the least and the greatest elements of this order are denoted
respectively by 0̃ and 1̃.

Definition 3.2 A mapping Ã :
⋃

n(LX)n → LX is called a general aggregation operator if the
following conditions hold:

(Ã1) Ã(0̃, . . . , 0̃) = 0̃;

(Ã2) Ã(1̃, . . . , 1̃) = 1̃;

(Ã3) ∀P1, ..., Pn, Q1, ..., Qn ∈ LX : Pi � Qi, i = 1, . . . , n =⇒ Ã(P1, . . . , Pn) � Ã(Q1, . . . , Qn).

There exist several approaches to construct a general aggregation operator Ã based on an
ordinary aggregation operator A. We use the notion of a T -extension [3] of A, which idea
comes from the classical extension principle [5]. To apply this principle we take X equals to an
interval on which A is acting.

Definition 3.3 Ã is called a T -extension of an aggregation operator A if

Ã(P1, . . . , Pn)(x) =
∨

x=A(x1,...,xn)

T (P1(x1), . . . , Pn(xn)),

where P1, P2, . . . , Pn ∈ LX , x, x1, x2, . . . , xn ∈ X.

4 Aggregation of non-negative L-fuzzy real numbers

We introduce an aggregation operator on the extended non-negative L-fuzzy real line R+(L) by
using the T -extension of an ordinary aggregation operator A. We assume that A :

⋃
n

R+
n → R+

is a continuous aggregation operator and a t-norm T is continuous too. Let us also assume that
A takes the value +∞ if at least one of the arguments is infinite.

We define the operator Ã :
⋃
n

(R+(L))n → R+(L) by the formula

Ã(z1, . . . , zn)(x) =
∨

x=A(x1,...,xn)

T (z1(x1), . . . , zn(xn)), if x ≥ 0,

and Ã(z1, . . . , zn)(x) = 1L, if x < 0,

where z1, z2, . . . , zn ∈ R+(L), x, x1, x2, . . . , xn ∈ R+.
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Let us show that properties (Ã1) − (Ã3) hold for the operator Ã, then we can be sure that
Ã is a general aggregation operator.

Proof of property (Ã1): To prove the equality Ã(θ̃, . . . , θ̃) = θ̃ we consider

Ã(θ̃, . . . , θ̃)(x) =
∨

x=A(x1,...,xn)

T (θ̃(x1), . . . , θ̃(xn)).

If x = 0, then
Ã(θ̃, . . . , θ̃)(0) ≥ T (θ̃(0), . . . , θ̃(0)) = 1L.

If x > 0, then A(x1, ..., xn) > 0, and there exists such i ∈ {1, . . . , n} that xi > 0. Hence

T (θ̃(x1), . . . , θ̃(xi−1), θ̃(xi), θ̃(xi+1), . . . , θ̃(xn)) = T (θ̃(x1), . . . , θ̃(xi−1), 0L, θ̃(xi+1), . . . , θ̃(xn)) = 0L.

Proof of the property (Ã2):

Ã(1̃, . . . , 1̃)(x) =
∨

x=A(x1,...,xn)

T (1̃(x1), . . . , 1̃(xn)) = T (1L, . . . , 1L) = 1̃(x).

Proof of property (Ã3): By the monotonicity of a t-norm, for all x1, . . . , xn, we obtain

zi ≤ yi, i = 1, 2, . . . , n =⇒ T (z1(x1), . . . , zn(xn)) ≤ T (y1(x1), . . . , yn(xn)) =⇒

=⇒
∨

x=A(x1,...,xn)

T (z1(x1), . . . , zn(xn)) ≤
∨

x=A(x1,...,xn)

T (y1(x1), . . . , yn(xn)) =⇒

=⇒ Ã(z1, . . . , zn) ≤ Ã(yi, . . . , yn).

Now it is important to show that by using Ã in the result we get a non-negative L-fuzzy
real number. It means that we must check properties (N1) – (N3) for Ã(z1, . . . , zn).

Proposition 4.1 For all z1, . . . , zn ∈ R+(L) the function Ã(z1, . . . , zn) is non-increasing:

x1 ≤ x2 =⇒ Ã(z1, . . . , zn)(x1) ≥ Ã(z1, . . . , zn)(x2).

Proof. We should prove that
∨

x1=A(τ1,...,τn)

T (z1(τ1), . . . , zn(τn)) ≥
∨

x2=A(t1,...,tn)

T (z1(t1), . . . , zn(tn)).

Let us fix arbitrary t1, . . . , tn such that x2 = A(t1, ..., tn). Considering the continuity of A and
using the intermediate value theorem, we obtain that

∃(τ1, . . . , τn) ∈
n∏

i=1

[0, ti] : A(τ1, ..., τn) = x1.

So if τi ≤ ti, then zi(τi) ≥ zi(ti), i = 1, . . . , n. Thereby

T (z1(τ1), . . . , zn(τn)) ≥ T (z1(t1), . . . , zn(tn)),
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Ã(z1, . . . , zn)(x1) =
∨

x1=A(u1,...,un)

T (z1(u1), . . . , zn(un)) ≥ T (z1(t1), . . . , zn(tn)),

Ã(z1, . . . , zn)(x1) ≥
∨

x2=A(t1,...,tn)

T (z1(t1), . . . , zn(tn)) = Ã(z1, . . . , zn)(x2).

Proposition 4.2 For all z1, . . . , zn ∈ R+(L) the function Ã(z1, . . . , zn) is bounded:

∧
x

Ã(z1, . . . , zn)(x) = 0L,
∨
x

Ã(z1, . . . , zn)(x) = 1L.

Proof.
Taking into account that Ã(z1, . . . , zn) is non-increasing, we obtain

∨
x∈[0,+∞]

∨
x=A(x1,...,xn)

T (z1(x1), . . . , zn(xn)) ≥ T (z1(0), . . . , zn(0)) = 1L;

∧
x∈[0,+∞]

∨
x=A(x1,...,xn)

T (z1(x1), . . . , zn(xn)) =
∨

+∞=A(x1,...,xn)

T (z1(x1), . . . , zn(xn)).

The equality A(x1, ..., xn) = +∞ implies that there exists such i that xi = +∞. Then

T (z1(x1), . . . , zn(xn)) = T (z1(x1), . . . , zi−1(xi−1), zi(+∞), zi+1(xi+1), . . . , zn(xn)) = 0L.

Therefore ∧
x∈[0,+∞]

∨
x=A(x1,...,xn)

T (z1(x1), . . . , zn(xn)) = 0L.

Proposition 4.3 For all z1, . . . , zn ∈ R+(L) the function Ã(z1, . . . , zn) is left semi-continuous:

∧
x<x0

Ã(z1, . . . , zn)(x) = Ã(z1, . . . , zn)(x0).

Proof. Let us denote Ã(z1, . . . , zn)(x) = z(x). Then we should prove that
∧

x<x0

z(x) = z(x0).

Let us assume the opposite, i.e.
∧

x<x0

z(x) = y(x0) �= z(x0). By the monotonicity we have

y(x0) > z(x0).
Basing on the fact that L is completely distributive [1], we will have

∧
x<x0

Ã(z1, . . . , zn)(x) =
∧

x<x0

∨
x=A(t1,...,tn)

T (z1(t1), . . . , zn(tn)) =
∨
f∈F

∧
x<x0

T (z1(t
f,x
1 ), . . . , zn(tf,x

n )),

where F is the set of choice functions f such that

for all x < x0 f(x) = (tf,x
1 , . . . , tf,x

n ) and A(tf,x
1 , . . . , tf,x

n ) = x.
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By the assumption ∨
f∈F

∧
x<x0

T (z1(t
f,x
1 ), . . . , zn(tf,x

n )) > z(x0)

one can find such choice function f that

∧
x<x0

T (z1(t
f,x
1 ), . . . , zn(tf,x

n )) �≤ z(x0).

Let us denote
α(x0) =

∧
x<x0

T (z1(t
f,x
1 ), . . . , zn(tf,x

n )).

The value α(x0) is either greater than z(x0) or is incomparable with z(x0).
Now let us take x = x0 − 1

m
and denote

t
f,x0− 1

m
i = tmi , i = 1, . . . , n, tm = (tm1 , . . . , tmn ), m ∈ N.

The sequence (tm)m∈N is such that

T (z1(t
m
1 ), . . . , zn(tmn )) ≥ α(x0).

We select a subsequence (tmk)k∈N, which has the limit, and denote this limit by t0: lim
k→∞

tmk = t0.

By the continuity of A:

A(t01, . . . , t
0
n) = A( lim

k→∞
tmk
1 , . . . , lim

k→∞
tmk
n ) = lim

k→∞
A(tmk

1 , . . . , tmk
n ) = x0.

We consider the set D = {(t1, . . . , tn) ∈ [0,∞] | T (z1(t1), . . . , zn(tn)) ≥ α(x0)} and note the
following properties:

• if t ∈ D and τ ≤ t, i.e. for all i ∈ {1, . . . , n} τi ≤ ti, then τ ∈ D;

• if a point τ = (τ1, . . . , τn) is such that A(τ1, . . . , τn) = x0, then τ �∈ D;

• if a point τ = (τ1, . . . , τn) is such that A(τ1, . . . , τn) > x0, then τ �∈ D.

Let us consider a line K from the product
n∏

i=1

[0, t0i ], which connects point zero and point t0.

Such a line can be described by the equations ti = τi(u) for all i ∈ {1, . . . , n}:
• if t0i < +∞, then τi(u) = ut0i , u ∈ [0, 1];

• if for some t0i = +∞, then τi(u) = u
1−u

, for all u ∈ [0, 1[ and τi(1) = +∞.

All points τ = τ(u) of the line K, when u ∈ [0, 1[, belong to the set D: if we fix some point
τ 0 ∈ K, τ 0 �= t0, then in every neighborhood of the point t0 one can find such a point tmk0

from the sequence (tmk)k∈N that for all i ∈ {1, . . . , n} τ 0
i < t

mk0
i . Now taking into account that

tmk0 ∈ D, we get τ 0 ∈ D.
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For every m ∈ N on the line K one can find a point τm such that A(τm
1 , . . . , τm

n ) = x0 − 1
m

.
This point can be found by using the continuity of A and the intermediate value theorem. Then

lim
m→∞

A(τm
1 , . . . , τm

n ) = lim
m→∞

(
x0 − 1

m

)
= x0.

For the subsequence (τmk)k∈N we have

lim
k→∞

τmk = t0, since lim
k→∞

τmk ∈ K and lim
k→∞

A(τmk
1 , . . . , τmk

n ) = x0.

Now let us take the limit in T (z1(τ
mk
1 ), . . . , zn(τmk

n )):

∧
k

T (z1(τ
mk
1 ), . . . , zn(τmk

n )) = T

(∧
k

z1(τ
mk
1 ), . . . ,

∧
k

zn(τmk
n )

)
= T (z1(t

0
1), . . . , zn(t0n)) = z(x0).

Here we have got a contradiction, since
∧
k

T (z1(τ
mk
1 ), . . . , zn(τmk

n )) ≥ α(x0). Thereby our

assumption was wrong and
∧

x<x0

z(x) = z(x0) or

∧
x<x0

Ã(z1, . . . , zn)(x) = Ã(z1, . . . , zn)(x0).

5 Properties of aggregation operator Ã

Now we consider some properties of aggregation operator Ã acting on non-negative L-fuzzy real
numbers. As Ã is based on an ordinary aggregation operator A and a t-norm T , it is natural
to investigate the properties of Ã depending on the properties of A and T .

Proposition 5.1 If operator A is associative, then operator Ã is associative:

∀z1, z2, z3 ∈ R+(L) Ã(z1, Ã(z2, z3)) = Ã(Ã(z1, z2), z3).

Proof. Ã(z1, Ã(z2, z3))(x) =
∨

x=A(x1,x2)

T
(
z1(x1), Ã(z2, z3)(x2)

)
=

=
∨

x=A(x1,x2)

T

⎛
⎝z1(x1),

∨
x2=A(x3,x4)

T (z2(x3), z3(x4))

⎞
⎠ =

=
∨

x=A(x2,x4)

T

⎛
⎝ ∨

x2=A(x1,x3)

T (z1(x1), z2(x3)), z3(x4)

⎞
⎠ =

=
∨

x=A(x2,x4)

T
(
Ã(z1, z2)(x2), z3(x4)

)
= Ã(Ã(z1, z2), z3)(x).
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Proposition 5.2 If operator A is commutative, then operator Ã is commutative:

∀z1, z2 ∈ R+(L) Ã(z1, z2) = Ã(z2, z1).

Proof. Ã(z1, z2)(x) =
∨

x=A(x1,x2)

T (z1(x1), z2(x2)) =
∨

x=A(x2,x1)

T (z2(x2), z1(x1)) = Ã(z2, z1)(x).

Proposition 5.3 If operator A is idempotent and T is a minimum t-norm TM , then operator
Ã is idempotent:

∀z ∈ R+(L) Ã(z, . . . , z) = z.

Proof. First of all let us show that Ã(z, . . . , z)(x) ≥ z(x):

Ã(z, . . . , z)(x) =
∨

x=A(x1,...,xn)

TM(z(x1), . . . , z(xn)) ≥
∨

x=A(x,...,x)

TM(z(x), . . . , z(x)) = z(x).

Now we should prove that Ã(z, . . . , z)(x) ≤ z(x). For an ordinary aggregation operator A
the idempotence is equivalent to the compensation property [6]:

min(x1, ..., xn) ≤ A(x1, ..., xn) ≤ max(x1, ..., xn).

Using this property we obtain

x = A(x1, ..., xn) ≤ max(x1, ..., xn),

z(x) ≥ TM(z(x1), ..., z(xn)).

Therefore
z(x) ≥

∨
x=A(x1,...,xn)

TM(z(x1), . . . , z(xn)) = Ã(z, . . . , z)(x).

Proposition 5.4 The neutral element of operator Ã in the case, when 0 is the neutral
element of operator A, is element θ:

Ã(z1, . . . , zi−1, θ̃, zi+1, . . . , zn) = Ã(z1, . . . , zi−1, zi+1, . . . , zn).

Proof. If xi > 0 and x = A(x1, . . . , xi−1, xi, xi+1, . . . , xn), then

T (z1(x1), . . . , zi−1(xi−1), θ̃(xi), zi+1(xi+1), . . . , zn(xn)) =

= T (z1(x1), . . . , zi−1(xi−1), 0L, zi+1(xi+1), . . . , zn(xn)) = 0L.

Thereby
Ã(z1, . . . , zi−1, θ̃, zi+1, . . . , zn)(x) =

=
∨

x=A(x1,...,xn)

T (z1(x1), . . . , zi−1(xi−1), θ̃(xi), zi+1(xi+1), . . . , zn(xn)) =
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=
∨

x=A(x1,...,xi−1,0,xi+1,...,xn)

T (z1(x1), . . . , zi−1(xi−1), θ̃(0), zi+1(xi+1), . . . , zn(xn)) =

=
∨

x=A(x1,...,xi−1,xi+1,...,xn)

T (z1(x1), . . . , zi−1(xi−1), zi+1(xi+1), . . . , zn(xn)) =

= Ã(z1, . . . , zi−1, zi+1, . . . , zn)(x).

Proposition 5.5 If operator A is homogeneous by means of multiplication with a positive
real number, then Ã is homogeneous by means of multiplication with a positive real number:

Ã(kz1, . . . , kzn) = kÃ(z1, . . . , zn), k > 0.

Proof. Ã(kz1, . . . , kzn)(x) =
∨

x=A(x1,...,xn)

T (kz1(x1), . . . , kzn(xn)) =

=
∨

x=A(x1,...,xn)

T
(
z1

(x1

k

)
, . . . , zn

(xn

k

))
=

∨
x
k
= 1

k
A(x1,...,xn)

T
(
z1

(x1

k

)
, . . . , zn

(xn

k

))
=

=
∨

x
k
=A(x1

k
,..., xn

k )

T
(
z1

(x1

k

)
, . . . , zn

(xn

k

))
= Ã(z1, . . . , zn)

(x

k

)
= kÃ(z1, . . . , zn)(x).

6 Operations with L-fuzzy real numbers

In this section we consider such t-norm based operations with non-negative L-fuzzy real numbers
as addition, minimum and maximum. We can rewrite the formula of addition by using the
general aggregation operator of arithmetic mean ÃM , which is based on the ordinary aggregation
operator of arithmetic mean AM :

z1 ⊕T . . . ⊕T zn = nÃM(z1, . . . , zn).

This formula is an equivalent of the classical formula for addition of L-fuzzy real numbers:

nÃM(z1, . . . , zn)(x) = ÃM(z1, . . . , zn)
(x

n

)
=

∨
x
n

=AM (x1,...,xn)

T (z1(x1), . . . , zn(xn)) =

=
∨

x
n

= 1
n

(x1+...+xn)

T (z1(x1), . . . , zn(xn)) =
∨

x=x1+...+xn

T (z1(x1), . . . , zn(xn)).

Some properties of the operator ⊕T can be obtained from the corresponding properties of
ÃM . As the ordinary AM operator is associative, commutative, and homogeneous, the operator
⊕T is associative, commutative and homogeneous as well. The element θ̃ is the neutral element
of ⊕T , i.e. z ⊕T θ̃ = z.
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The property of distributivity (α + β)z = αz ⊕T βz, α, β > 0 does not hold for an arbitrary
t-norm. For example, in the case of product t-norm TP : z⊕TP

z �= 2z for some z ∈ R+(L). The
distributivity holds, when the extension of operator preserves the idempotence. Really, taking
into account the equality

ÃM((α + β)z, (α + β)z) = ÃM(2αz, 2βz),

which holds in the case of minimum t-norm TM , the distributivity can be reduced to

ÃM((α + β)z, (α + β)z) = (α + β)z

(this last equality means the idempotence property). To prove the equality we consider

ÃM((α + β)z, (α + β)z)(x) =
∨

x1+x2=2x

TM

(
z

(
x1

α + β

)
, z

(
x2

α + β

))
= z

(
x

α + β

)
,

ÃM(2αz, 2βz)(x) =
∨

x1+x2=2x

TM

(
z
( x1

2α

)
, z

(
x2

2β

))
= z(x0),

where x0 = x
α+β

is obtained as the solution of the following system of linear equations:

{
x1

2α
= x2

2β
= x0,

x1 + x2 = 2x.

We define the operations of minimum and maximum of L-fuzzy real numbers by the following
formulas:

MIN(z1, . . . , zn)(x) =
∨

x=min(x1,...,xn)

T (z1(x1), . . . , zn(xn)),

MAX(z1, . . . , zn)(x) =
∨

x=max(x1,...,xn)

T (z1(x1), . . . , zn(xn)).

As the ordinary operators of minimum and maximum are associative, commutative, homo-
geneous and idempotent, the extended operations with L-fuzzy real numbers MIN and MAX
will be associative, commutative, homogeneous and idempotent (in the case of minimum t-
norm) as well. But it is worth to mention that the result of these operations depends on the
choise of a t-norm. For example the result of MIN operation in the case of minimum t-norm
TM will be just an ordinary minimum of functions, but the result in the case of product t-norm
TP can be different from the ordinary one.
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ON AN L-FUZZY VALUED INTEGRAL
WITH RESPECT TO AN L-FUZZY VALUED TM-MEASURE

RUZA Vecislavs, (LV)

Abstract. We continue to develop a theory of an L-fuzzy valued T-measure and consider
an L-fuzzy valued integral of a real valued non-negative measurable function over L-set
with respect to an L-fuzzy valued T-measure. The main purpose of the present paper is to
introduce the concept of an L-fuzzy valued integral and to investigate it basic properties.

Key words and phrases. L-sets, L-fuzzy real numbers, L-fuzzy valued measure, L-fuzzy
valued integral.
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1 Introduction

One can find a lot of works regarding fuzzy approach to measure and integral. The biggest
scope on this subject can be found in [1],[2],[3]. Our interest is in developing a theory where
not only sets are fuzzy, but also measure and integral take fuzzy real values. To realize this
we need a concept of a fuzzy real number. From majority of different definitions we give our
preference to the fuzzy real numbers as they were first defined by B. Hutton [4], and then
studied thoroughly in a series of papers [5],[6],[7].

In our previous works [8],[9] we suggested the construction of an L-fuzzy valued T -measure
of L-sets by extension a measure defined on a σ-algebra of crisp sets to a T -measure on a T -tribe
where T is the minimum t-norm TM(x, y) = x ∧ y and L is a completely distributive lattice.

The main purpose of the present paper is to define an L-fuzzy valued integral based on
described above L-fuzzy fuzzy valued measure and to show some basic properties of it. Initial
results on this topic were presented at the conference FSTA in Slovakia in 2010.
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2 L-sets and L-fuzzy real numbers

Given a (crisp) universe X and a completely distributive lattice L(∧,∨, 0L, 1L), an L-subset A
of X (or, briefly, an L-set A) is a function A : X −→ L. The class of all L-subsets of X is
denoted LX . The operations for L-sets A,B and for a sequence of L-sets (An)n∈N are defined
by using the minimum triangular norm TM , its corresponding co-norm SM and involution N :

(A ∧ B)(x) = TM(A(x), B(x)), (A ∨ B)(x) = SM(A(x), B(x)), Ac(x) = N(A(x)),
∞∧

n=1

An =
∧

n∈N

(A1 ∧ A2 ∧ ... ∧ An) and
∞∨

n=1

An =
∨

n∈N

(A1 ∨ A2 ∨ ... ∨ An).

A finite family of L-sets A1, A2, . . . , An is said to be TM -disjoint (see e.g.[1]) iff for each

k ∈ {1, . . . , n} we have (
n∨

j=1,j �=k

Aj) ∧ Ak = ∅. A countable family of L-sets is said to be

TM -disjoint iff every finite subfamily of this family is TM -disjoint.

In order to define an L-fuzzy valued TM -measure we consider a class of L-sets called TM -tribe
(see e.g. [1]) and L-fuzzy real numbers defined by B. Hutton [4].

Definition 2.1 A subclass Σ ⊂ LX is called a TM -tribe on X if the following properties are
satisfied:

• ∅ ∈ Σ;

• for all A ∈ Σ we have Ac ∈ Σ;

• for all sequences (An)n∈N ⊂ Σ we have
∞∧

n=1

An ∈ Σ.

Definition 2.2 An L-fuzzy real number is a function z : R → L such that

• z is non-increasing;

• ∧
t

z(t) = 0L,
∨
t

z(t) = 1L;

• z is left semi-continuous, i.e.
∧

t<t0

z(t) = z(t0).

The set of all L-fuzzy real numbers is called the L-fuzzy real line and it is denoted by R(L).
A fuzzy number z is called non-negative if z(0) = 1L. The set of all non-negative L-fuzzy real
numbers we denote by R+(L).

Operations with L-fuzzy real numbers such as addition ⊕ and multiplication by a real positive
number are defined as following:

(z1 ⊕ z2)(t) =
∨
τ

{z1(τ) ∧ z2(t − τ)}, (
⊕
n∈N

zn)(t) =
∨
n∈N

(z1 ⊕ z2 ⊕ ... ⊕ zn)(t) and (zr)(t) = z(
t

r
).
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The supremum of F ⊂ R+(L) defined by formula (see e.g. [10]):

(Sup F )(t) = ∧{z(t) | z is an L-fuzzy number and z ≥ z′ for all z′ ∈ F}.
If F is bounded from above (i.e. there exists z0 ∈ R(L) such that z ≤ z0 for all z ∈ F ), then
SupF is an L-fuzzy real number, otherwise the condition

∧
t

SupF (t) = 0L not necessarily holds.

For a ∈ R+ and α ∈ L by z(a, α) we denote a special type of non-negative L-fuzzy real numbers

(z(a, α))(t) =

⎧⎨
⎩

1, t ≤ 0,
α, 0 < t ≤ a,
0, t > a,

that will play an important role in our work. Note that:

a1, a2 ∈ R+ ⇒ z(a1, α) ⊕ z(a2, α) = z(a1 + a2, α); c ∈ R+ ⇒ cz(a, α) = z(ca, α);

ai ∈ R+, i ∈ J ⇒ Sup{z(ai, α) | i ∈ J} = z(sup{ai | i ∈ J}, α).

3 L-fuzzy valued TM -measure

In this section we consider a measure that defined on a TM -tribe and takes values in R+(L).

Definition 3.1 Let Σ be a TM -tribe. A function μ : Σ → R+(L) is called an L-fuzzy valued
TM -measure if it satisfies the following conditions:

• μ(∅) = z(0, 1L);

• μ is TM -valuation, i.e. for all A,B ∈ Σ it holds μ(A ∧ B) ⊕ μ(A ∨ B) = μ(A) ⊕ μ(B);

• μ is left TM -continuous, i.e.
∨

n∈N

μ(An) = μ(A), where (An)n∈N ⊂ Σ,
∨

n∈N

An = A ∈ Σ.

For a given σ-algebra Φ ⊂ 2X and a finite measure ν : Φ → R+ an L-fuzzy valued TM -measure
can be obtained by the following schema (see e.g. [8], [9]):

• For M ∈ Φ, α ∈ L we define an L-fuzzy set

(A(M,α))(x) =

{
α, x ∈ M,
0, x /∈ M.

All these L-sets form a class of L-sets that we denote by ℘.

• Next we define an L-fuzzy valued function m : ℘ → R+(L) by

m(A(M,α)) = z(ν(M), α),

and we extend it to the L-fuzzy valued function m∗ : LX → R+(L) as following:

m∗(E) =
∧

{
∞⊕

n=1

m(En) | (En)n∈N ⊂ ℘ : E ≤
∞∨

n=1

En}.
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• We denote by Σ the TM -tribe of all so called m∗-measurable L-sets B ∈ LX such that for
all E ∈ LX it holds

m∗(B) ⊕ m∗(E) = m∗(B ∧ E) ⊕ m∗(B ∨ E),

m∗(Bc) ⊕ m∗(E) = m∗(Bc ∧ E) ⊕ m∗(Bc ∨ E).

• We consider μ as the restriction of m∗ to Σ. Then μ is an L-fuzzy valued TM -measure
such that μ/℘ = m.

4 L-fuzzy valued integral

Our aim is to define an L-fuzzy valued integral
∫
E

f dμ, where E ∈ Σ and f : X → R is a

non-negative measurable function with respect to σ-algebra Φ.

By analogy with the classical case ([11]) we define an L-fuzzy valued integral stepwise, first
considering the case of simple non-negative measurable functions (for short SNMF):

∫
E

(
n∑

i=1

ciχCi
) dμ =

n⊕
i=1

(ci μ(Ci ∧ E)),

whenever ci ∈ R+, Ci ∈ Φ, χCi
is the characteristic function, i ∈ {1, ..., n}, and C1, ..., Cn are

pairwise disjoint sets.

Then considering the case for non-negative measurable function f (for short NMF):

∫
E

f dμ = Sup{
∫
E

g dμ | g ≤ f and g is SNMF}.

For If =
∫
E

f dμ due to properties of the supremum of a set of L-fuzzy numbers, we have

• If is non-increasing,

• ∨
t

If (t) = 1L,

• If is left semi-continuous, i.e.
∧

t<t0

If (t) = If (t0).

Definition 4.1 We say that a non-negative measurable function f is L-fuzzy integrable iff

∧
t

If (t) = 0L.
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5 Properties of an L-fuzzy valued integral

In this section we consider properties of an L-fuzzy valued integral of L-fuzzy integrable func-
tions.

(I1) r ∈ R+ ⇒ ∫
E

rfdμ = r
∫
E

fdμ

Proof. In the case when integrand f =
n∑

i=1

ciχCi
is SNMF the equality follows from

n⊕
i=1

((rci) μ(Ci ∧ E)) = r

n⊕
i=1

(ci μ(Ci ∧ E)).

Considering the case when f is NMF and r > 0 (if r = 0 then the equality is obvious) we
have

∫
E

rfdμ = Sup{
∫
E

g dμ | g ≤ rf, and g is SNMF} =

= rSup{
∫
E

g

r
dμ̃ | g

r
≤ f, and g is SNMF} = r

∫
E

fdμ.

(I2) f1 ≤ f2 ⇒
∫
E

f1dμ ≤ ∫
E

f2dμ

Proof. From

{
∫
E

g dμ | g ≤ f1 and g is SNMF} ⊂ {
∫
E

g dμ | g ≤ f2 and g is SNMF}

it follows

Sup{
∫
E

g dμ | g ≤ f1 and g is SNMF} ≤ Sup{
∫
E

g dμ | g ≤ f2 and g is SNMF}.

(I3) E1 ⊂ E2 ⇒
∫
E1

f dμ ≤ ∫
E2

f dμ

Proof. The inequality

Sup{
∫
E1

g dν | g ≤ f and g is SNMF} ≤ Sup{
∫
E2

g dν | g ≤ f and g is SNMF}

holds due to
∫
E1

gdμ ≤ ∫
E2

gdμ, where g =
n∑

i=1

ciχCi
is SNMF. The last inequality is equiva-

lent to
n⊕

i=1

ci μ(Ci ∧ E1) ≤
n⊕

i=1

ci μ(Ci ∧ E2),
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that holds because of monotonicity of μ.

(I4) (Ek)k∈N : Ek ≤ Ek+1 and
∨

k∈N

Ek = E ⇒ ∫
E

fdμ = Sup{∫
Ek

fdμ}

Proof. We start with the case when f is SNMF:

∫
E

f dμ =
k⊕

i=1

(ci μ(Ci ∧ E)) = Sup{
k⊕

i=1

(ci μ(Ci ∧ Ek)) | k ∈ N} = Sup{
∫
Ek

fdμ | k ∈ N}.

Now to prove the equality when f is NMF we show both inequalities ”≥” and ”≤”.
The inequality

∫
E

f dμ ≥ ∫
Ek

f dμ for all k ∈ N implies the inequality

∫
E

f dμ ≥ Sup{
∫
Ek

fdμ | k ∈ N}.

Taking into account that for all functions g (g is SNMF and g ≤ f) we have

∫
E

g dμ = Sup{
∫
Ek

g dμ | k ∈ N} ≤ Sup{
∫
Ek

f dμ | k ∈ N},

it follows that∫
E

f dμ = Sup{
∫
E

g dμ | g is SNMF and g ≤ f} ≤ Sup{
∫
Ek

f dμ | k ∈ N}.

(I5) (fn)n∈N : fn ≤ fn+1 and lim
n→∞

fn = f ⇒ Sup{∫
E

fn dμ | n ∈ N} =
∫
E

f dμ

Proof. To prove the equality we show that both inequalities ”≤” and ”≥”.
The inequality

∨
n∈N

(
∫
E

fn dμ) ≤ ∫
E

f dμ holds due to property (I2). To show the opposite

inequality by using a function g (g is SNMF and g ≤ f) and a number c ∈ (0, 1) we define

Mn = {x ∈ X | fn(x) ≥ cg(x), c ∈ (0, 1)} and En = E ∧ Mn, n ∈ N.

Obviously, Mn ≤ Mn+1 and
⋃

n∈N

Mn = Dom(f). Now we have

∫
E

fndμ ≥
∫

E∧Mn

fndμ ≥
∫

E∧Mn

cg dμ,

Sup{
∫
E

fn dμ | n ∈ N} ≥ c Sup{
∫

E∧Mn

g dμ | n ∈ N} = c

∫
W

n∈N

En

g dμ.
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It follows

Sup{
∫
E

fn dμ | n ∈ N} ≥ c

∫
E

f dμ.

And finally,

Sup{
∫
E

fn dμ | n ∈ N} ≥
∫
E

f dμ.

(I6)
∫
E

(f1 + f2)dμ =
∫
E

f1dμ ⊕ ∫
E

f2dμ

Proof. Again we start with the case when integrands are SNMF:

f1(x) =
n∑

i=1

ci χCi
, f2(x) =

k∑
j=1

bj χBj
, (f1 + f2)(x) =

p∑
l=1

al χAl
.

We suppose that
n⋃

i=1

Ci =
k⋃

j=1

Bj =
p⋃

l=1

Al = X. Then

∫
E

(f1 + f2)dμ =
m⊕

l=1

(al μ(Al ∧ E)) =
n⊕

i=1

k⊕
j=1

m⊕
l=1

(al μ(Al ∧ Ci ∧ Bj ∧ E)) =

=
n⊕

i=1

k⊕
j=1

m⊕
l=1

((ci + bj) μ(Al ∧ Ci ∧ Bj ∧ E)) =

=
n⊕

i=1

ci

k⊕
j=1

m⊕
l=1

μ(Al ∧ Ci ∧ Bj ∧ E)) ⊕
k⊕

j=1

bj

n⊕
i=1

m⊕
l=1

μ(Al ∧ Ci ∧ Bj ∧ E)) =

=
n⊕

l=1

ci μ(Ci ∧ E) ⊕
k⊕

j=1

bj μ(Bj ∧ E) =

∫
E

f1dμ ⊕
∫
E

f2dμ.

Now we consider the case when integrands are NMF. Then we can find non-increasing
sequences of SNMF (gn)n∈N and (hn)n∈N: lim

n→∞
gn = f1 and lim

n→∞
hn = f2.

Hence,

∫
E

f1 dμ ⊕
∫
E

f2 dμ = Sup{
∫
E

gn dμ | n ∈ N} ⊕ Sup{
∫
E

hn dμ | n ∈ N} =

= Sup{
∫
E

(gn + hn) dμ | n ∈ N} =

∫
E

(f1 + f2) dμ.
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(I7) E1 ∧ E2 = ∅ ⇒ ∫
E1∨E2

fdμ =
∫
E1

fdμ ⊕ ∫
E2

fdμ

Proof. To prove the equality we define

f1(x) =

{
f(x), when x ∈ Supp(E1),
0, otherwise.

f2(x) =

{
f(x), when x ∈ Supp(E2),
0, otherwise.

Now we obtain ∫
E1∨E2

fdμ =

∫
E1∨E2

(f1 + f2)dμ =

∫
E1∨E2

f1dμ ⊕
∫

E1∨E2

f2dμ =

=

∫
E1

f1dμ ⊕
∫
E2

f2dμ =

∫
E1

fdμ ⊕
∫
E2

fdμ.

(I8) A(M,α) ∈ ℘ ⇒ ∫
A(M,α)

fdμ = z(
∫
M

f dν, α)

Proof. For f =
n∑

i=1

ciχCi
we get

∫
E

n∑
i=1

ciχCi
dμ =

n⊕
i=1

(ci μ̃(Ci ∧ A(M,α))) =
n⊕

i=1

(ci z(ν(M ∩ Ci), α)) =

= z(
n∑

i=1

ci ν(M ∩ Ci), α) = z(

∫
M

fdν, α).

In the case when f is NMF we have

∫
E

f dμ = Sup{z(

∫
M

g dν, α) | g ≤ f and g is SNMF} =

= z(sup{
∫
M

g dν, α | g ≤ f and g is SNMF}, α) = z(

∫
M

fdν, α).

6 Indefinite L-fuzzy valued integral

For a given real valued non-negative L-fuzzy integrable function f we define μf : Σ → R+(L)
as following:

μf (E) =

∫
E

f dμ.
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It is easy to show that μf is an L-fuzzy valued measure. And really, due to integral property
(I4) μf is left TM -continuous. We need to prove that

μf (E1 ∨ E2) ⊕ μf (E1 ∧ E2) = μf (E1) ⊕ μf (E1) for all E1, E2 ∈ Σ.

Considering M1 = {x ∈ X | E1(x) ≥ E2(x)} and M1 = {x ∈ X | E1(x) < E2(x)} we can split
L-sets E1, E2 into two TM -disjoint L-sets as following:

E1 = (E1 ∧ M1) ∨ (E1 ∧ M2) and E2 = (E2 ∧ M1) ∨ (E2 ∧ M2).

Obviously,

E1 ∨ E2 = (E1 ∧ M1) ∨ (E2 ∧ M2) and E1 ∧ E2 = (E1 ∧ M2) ∨ (E2 ∧ M1).

Hence,

∫
E1

f dμ ⊕
∫
E2

f dμ =

∫
(E1∧M1)∨(E1∧M2)

f dμ ⊕
∫

(E2∧M1)∨(E2∧M2)

f dμ =

=

∫
E1∧M1

f dμ ⊕
∫

E1∧M2

f dμ ⊕
∫

E2∧M1

f dμ ⊕
∫

E2∧M2

f dμ =

∫
E1∨E2

f dμ ⊕
∫

E1∧E2

f dμ.

By analogy with the classical case μf is called an indefinite L-fuzzy valued integral.

We can also show that μf can be obtained in another way described by the following diagram:

ν −→ μ
↓ ↓
νf → μf

First, let us consider measure νf (the indefinite integral of f with respect to measure ν) as
following:

νf (M) =

∫
M

f dν, M ∈ Φ.

Now by using the construction described in the third section we obtain measure μ̃f . Taking
into consideration

μf (A(M,α)) = z(

∫
M

f dν, α) and μ̃f (A(M,α)) = z(νf (M), α)

we obtain that values μf and μ̃f are equal for any L-fuzzy set from ℘, that proves equality
μf = μ̃f .
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FUZZY   SEMANTIC   NETWORKS 

 
ŽÁČEK Martin, (CZ) 

 
Abstract. Semantic networks have origins in linguistics, but this conceptual oriented mean 
appeared in computer science. Semantic network is easy and intelligible mean of modeling on 
conceptual level, because they rank among the sophisticated systems. Paper should characterize 
the basic possibility of semantic networks. Although their development is already closed, I am 
going to continue in their development in field of fuzzy modeling. Implementation of fuzzy 
logic into semantic networks increases expressivity of semantic networks. 
 
Key words. Semantic networks, Fuzzy logic, Fuzzy predicate logic, Fuzzy semantic networks. 
 
Mathematics Subject Classification: 03B52, 18C50.  

 
 
1 First Section 
 
In 1968 M. R. Quillian booted associative networks for the purpose of modeling the semantics of 
English sentences. The associative networks have only double figure predicate in contrast to 1st 
order logic, only those relations can be represented as the network that has its edges and nodes. 
Edges carry labels as their predicate symbols, nodes carry symbols permitted in predicate attributes, 
i.e. terms denotative objects represented world - the reference system. 
Basic (atomic) statements of networks have the character of vector  
(<subject><have a property><object>) or (<subject><predicate><object>). 
 

 

Figure 1: The graph of vector. 
 
Definition 1 
The semantic network is a weighted graph consisting of nodes, labeled terms, and edges, labeled 
binary predicate symbols, where edges connect some pair of nodes. 

subject object 
predicate 
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        Predicate symbol  
 
 
 
 
Example 1 
The statement “David likes strawberry ice cream.” has the scheme like(<who><what><what 
kind>). This statement can express ternary predicate and can be represented with binary predicate 
like(<who><what>), flavor(<what><what kind>) the following graph. 
 

 
Figure 3: The statement of example 1. 

 
The semantic networks don´t dispose of means for representation universal and existential 
quantification. Formula of first order logic must adjust to the special clausal form. There is a 
problem, which the associative networks share with clausal form logic. 
 
Statements in the knowledge bases of associative networks are represented these types of networks: 

 unconditional networks – universal and base networks, 
 conditional networks – universal and base networks. 

 
Conditions in associative networks are, just as in clausal form or predicate logic, rules with 
antecedent and consequent. General form of conditional is in the associative networks: 
 
 q if p1, p2 ,...pn (1)  
 
Conditions in the networks may have more than one atom in the antecedent, but only one (opposed 
to clausal form logic) in consequent. Conditions are drawn so that the atoms of antecedent are 
inscribed with interrupted line, consequent solid line.  
 
Example 2 
The base condition represents the statement “Dagmar is a first lady when she married to the 
President Vaclav.” 

David 

ice cream

strawberry

likes 

flavor 

 1st term   2nd term  

Figure 2: The semantic network. 
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Figure 4: The base condition of example 2 
 
To negate the semantic network a special statement is used. It stands for the false consequent in the 
implication with a true antecedent.  Due to no existence of a definition for a contradiction semantic 
network, a new special symbol of network has been created, called falsum, (notation ), which is 
false in all interpretations. 
 
Example 3 
Let we have statement: “David doesn’t like strawberry ice cream.” See following figure. 
 

 
Figure 5: The statement of example 1. 

 
 
2 Fuzzy Predicate Logic 
 
The fuzzy predicate logic with evaluated syntax is a flexible and fully complete formalism, which 
will be used for the below presented extension [5]. In order to use an efficient form of the resolution 
principle we have to extend the standard notion of a proof (provability value and degree) with the 
notion of reputational proof (refutation degree). Propositional version of the fuzzy resolution 
principle has been already presented in [3]. We suppose that set of truth values is Łukasiewicz 
algebra. Therefore we assume standard notions of conjunction, disjunction etc. to be bound with 
Łukasiewicz operators. 
We will assume Łukasewicz algebra to be 
 

 LŁ =   1,0,,,,,1,0   (2) 
 

where [0, 1] is the interval of real’s between 0 and 1, which are the smallest and greatest elements 
respectively. Basic and additional operations are defined as follows: 
 

  10  baba  (3) 

  baba  11  (4) 

David 

ice cream

strawberry

likes 

flavor   

post 
Vaclav 

Dagmar First lady

President

married 
post 
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  baba  1  (5) 
 aa  1  (6) 
 

The equivalence operation   could be defined    abbaba df  , where   is infimum 

operation. The following properties of LŁ will be used in the sequel: 
 

 ,1 aa  ,00 a  
 ,11 a  ,0 aa   
 ,11 a  ,0 aa   
 ,1 aa   
 10  a . 

 
The syntax and semantics of fuzzy predicate logic is following: 

  terms ntt ,,1   are defined as in FOL (First Order Logic), 

 predicates with mpp ,,1   are syntactically equivalent to FOL ones. Instead of 0 we write  

and instead of 1 we write ⊤, connectives - & (Łukasiewicz conjunction),  (Łukasiewicz 
disjunction), → (implication), ¬ (negation),  (universal quantifier),  (existential 
quantifier) and furthermore by FJ we denote set of all formulas of fuzzy logic in language J, 

 FPL formulas have the following semantic interpretations (D is the universe): Interpretation 
of terms is equivalent to FOL,        

nn iiiiii tDtDPttpD ,,,,
11
   where Pi is a fuzzy 

relation assigned to pi,   aaD  for a[0, 1],      BDADBAD & , 

     BDADBAD  ,      BDADBAD  ,    ADAD  , 

     DddxADAXD  / ,      DddxADAXD  / , 

 for every subformula defined above Sub, Sup, Pol, Lev, Qnt, Sbt, Sig and other derived 
properties defined in section 2 hold (where the classical FOL connective is presented the 
Łukasiewicz one has the same mapping value). 

 
Graded fuzzy predicate calculus assigns grade to every axiom, in which the formula is valid. It will 
be written as a/A where A is a formula and a is a syntactic evaluation. 
 
 
3 Fuzzy semantic networks 
 
Of the above is clear that the semantic networks have only double figure predicate in contrast to 1st 
order logic, only those relations can be represented as the network. Fuzzy semantic network created 
evaluated of these double figure predicates by fuzzy predicate logic.  
 
Definition 2 
The fuzzy semantic network is a weighted graph consisting of nodes, labeled terms, and edges, 
evaluated binary predicate symbols, where edges connect some pair of nodes. 
 
       a/ Predicate symbol  
 
 

 1st term   2nd term  

Figure 5: The fuzzy semantic network. 
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Classical semantic network represents a statement (see Figure 3) or negation statement (Figure 5), 
corresponding first order logic and these statements are evaluated either true or false, 1 or 0. For 
example, we have statement “David likes strawberry ice cream.” where this statement is evaluated 
as true (or 1). And we have statement “David doesn’t like strawberry ice cream.” where is evaluated 
as false (or 0). 
 
If we have a fuzzy semantic network, so we can evaluated double figure predicate values from the 
interval <0, 1> (see fuzzy predicate logic). 
 
Example 4 
We have statement “David likes an ice cream.” that is evaluated value 0.6 [0.6/likes(David, 
ice cream)], see following figure: 
 

 

Figure 6: Semantic network of Example 4. 
 
Example 5 
Let we have statement “David likes strawberry and chocolate ice cream.” and have question “What 
flavor of ice cream does David like the most?” Now we must adjust this statement to form of Figure 
3 and evaluate double figure predicates about flavor. 
Evaluated predicates: 

 0.9/likes(David, ice cream) = a, 
 0.7/flavor(ice cream, chocolate) = b, 
 0.3/flavor(ice cream, strawberry) = c. 

 
 
 
 
 
 
 

 
Figure 7: Semantic networks of Example 5. 

 
So that we can answer on our question, we must evaluate base on operations (3) – (6) each network 
of sentences: “David likes chocolate ice cream.” and “David likes strawberry ice cream.” 

 For first sentence holds:     6.06.0017.09.0010  baba  

 For second sentence holds:     2.02.0013.09.0010  caca  
Now we can answer on our question so that David likes chocolate ice cream the most. 
 
Example 6 
Consider following statement: “Exist child who is happy, if has mother and father at the same 
time.” 

David ice cream 

0.6/likes 

David ice cream 

chocolate 

strawberry 

0.9/likes 

0.7/flawor 

0.3/falwor 
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Figure 8: Semantic networks of Example 6. 
 
Because we have conditional universal networks, therefore hold the rule (1), where: 

 q is 1/is(@child, happy), 
 p1 is 0.5/has(@child, @mother), 
 p2 is 0.5/has(@child, @father), 

For rule (1) holds: q if p1, p2 and this rule we can rewrite to form: q → p1 & p2. 
Now we can use this modified rule for evaluated whole networks: 

1. q → p1 & p2 
2. 1 → 0.5 & 0.5      substitute 
3. 0.5 & 0.5    15.05.015.05.0    apply rule (5) 

4. 1 → 1  1      apply rule implication 
5. Child is happy.     conclusion 

These steps are proof that exist child who is happy if has both parents. 
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PATERNITIES   SEARCH   WITH   OBJECT-ORIENTED 

 BAYESIAN   NETWORKS 
 

ANDRADE  Marina,  (PT),   FERREIRA,  Manuel Alberto M.,   (PT) 
 
 

Abstract. Paternity dispute problems are examples of situations in which forensic approach the 
DNA profiles study is a common procedure. To implement this approach an efficient tool are 
the object-oriented Bayesian networks (OOBN). Along this paper are presented the various 
OOBN adequate to solve the simple paternity dispute and more complex paternity dispute 
problems with incomplete DNA profiles data about the putative father such as: only putative 
grandfather information, only putative uncle information, only putative father ‘s uncle 
information and only simultaneously putative uncle and putative father’s uncle information. 
Here it is exhibited an algebraic treatment, for the simple problem and with those the use of the 
object-oriented Bayesian networks is shown. Then the most complex kind of problems that may 
occur is presented. Although these are not the most common cases there is notice of its 
occurrence at least in Portuguese courts. 
 
Key words: Bayesian networks, DNA profiles, paternity dispute problems.  
 
Mathematics Subject Classification:  Primary 62C10; Secondary 62P99. 

 
 

1 Introduction 

 
The use of Bayesian networks in forensic identification problems has raised more and more 
attention, even for the social impact of these problems. It is usually recognized that the paternity 
dispute problems approach using Bayesian networks began with the works of Dawid et al. (2002) 
and Lauritzen (2003). In Andrade (2007) the use of this tool in paternity dispute and criminal cases 
is discussed. Some of the paternity dispute cases discussed here, although not the more frequent in 
courts, already occurred. And given its specificity justify the discussion and the use of Bayesian 
networks in the computation of a measure of the available evidence. 
 
In the developed countries the application of the forensic identification statistics approach has 
grown significantly. The use of DNA evidence in forensic identification problems tries essentially 
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to look for answers to the logical and computational challenges that may occur in more complex 
situations such as, for instance, incomplete data.  
 
The OOBN adequate to solve the simple paternity dispute is presented first jointly with the alternative 
algebraic treatment for checking purpose. Then the OOBN for the more complex paternity dispute problems 
with incomplete DNA profiles data about the putative father such as:  

- only putative grandfather information,  
- only putative uncle information,  
- only putative father ‘s uncle information, 
- only simultaneously putative uncle and putative father’s uncle information  

are shown. In these cases an algebraic treatment is out of question being the computational procedure 
imperative. 
 

2 Simple Paternity Dispute 

 
In a disputed paternity decision problem there are formally two challenging hypotheses (prosecution 
and defense): 
 
HP: The true father is the putative father. 
 
vs 
 
HD: The true father is another individual randomly drawn from the population, and not genetically 

related with the mother or the putative father. 
 
The court has to decide about the paternity of the  child, and so, after Bayes’  Law 
 
 
 
 
 
with E the vector containing the available evidence, genetic information of the mother (mgt), of the 
child (cgt) and of the putative father (pfgt), being the algebraic approach simple.  
 
It is needed to assess the likelihood function over the hypotheses as to the true father, i.e., to 
evaluate the likelihood ratio: 
 

 
  (2)                                                                     

|

|

D

P

HEP

HEP
LR  . 

 
Naturally the court has to answer to the truly paternity of the child. So it has to evaluate the ratio of 
the hypotheses in dispute. Admitting that    DP HPHP   then (1) becomes 
 

 
 

 
  (3)                                           

|

|

|

|

D

P

D

P

HEP

HEP

EHP

EHP
 . 

 
 

 
 

 
  ,(1)                                              

|

|

|

|

D

P

D

P

D

P

HP

HP

HEP

HEP

EHP

EHP

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In fact, knowing that the markers are in different chromosomes (linkage equilibrium) and assuming 
random mating (Hardy-Weinberg equilibrium) there is independence between and within markers. 
Thus, it is possible to obtain the LR for each marker separately and finally multiply the values to 
determine the overall likelihood ratio based on the data available for all markers.  
 
To determine algebraically the probability of the triplet E, under the two hypotheses, it is reasonable 
to consider that before knowing any data on the child it is reasonable to assume that the identity of 
the true father is independent of the mother’s and the putative father’s. And supported on that, it is 
easily seen that it is possible to determine the conditional probability of the child’s genotype, given 
the other two available genotypes. Thus, to determine  PHEP |  one has only to apply Mendel’s 

laws. But the calculus of  DHEP |  necessarily demands the knowledge of the population allele 
frequencies for the considered markers. 
 
If for a certain marker the triplet E = (mgt, cgt, pfgt) is       BABBBAE ,;,;, , and pA and pB are 
the population allele frequencies then 

      
  
5.05.0                 

   ;|                 

;|;;|





pfgtmgtcgtP

pfgtmgtpfgtcgtmgtPHEP P

 

and 
      

  
B

D

p

rgtmgtcgtP

rgtmgtpfgtcgtmgtPHEP





5.0                 

   ;|                 

;|;;|

 

where rgt assigns the genotype of a random individual of the population, not related to the mother 
or the putative father. 
 
Therefore, 

.
5.0

Bp
LR   

 
The considered problem is, as shown, easily algebraically solved. It is used to illustrate the 
simplicity and the advantages of this tool in more complex situations. Given the freedom of choice 
for the variables to include in the graphical approach, different representations can be obtained. 
Some of them simpler than others. To get a ‘good’ representation is very important to the efficiency 
and the viability of the computational routines. These are extremely sensible to the organization of 
the graphical structure. The first step consists on the identification and definition of the nodes for all 
the variables of interest to the problem.  
 
Then the graphical representation can be obtained. According to Dawid et al. (2002), in order to 
maximize the efficiency of the calculations as well as the logical clarity of the representation we 
chose to disaggregate each individual’s genotype into its constituent, unobserved, paternally and 
maternally inherited genes.     
 
Figure 1 exhibits the OOBN for a paternity case as the discussed above considering a single marker. 
Each node (instance) in the network represents itself a Bayesian network. 
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Figure 1: Simple paternity network. 
 

In this simple paternity case instances pfmg, pfpg, mpg and mmg are all of class founder, a single 
node gene, having for its space of states all the possible alleles that can be presented for the specific 
case, and the correspondent population gene frequencies. Instances mgt, cgt and pfgt are of class 
genotype, an unordered pair of alleles inherited from paternal, pg, and maternal, mg, genes, here 
represented by gtmin:=min{pg, mg} and gtmax:=max{pg, mg}, where pg and mg are input nodes 
identical to the gene node of founder. Instances tfmg and tfpg are of class whom, describing the 
true father’s allele origin. If tf=pf? has true for value then the true father’s allele, tfg, will be 
identical with the putative father’s, pfg, otherwise the true father’s allele is randomly chosen from 
another man in the population. And cpg and cmg instances are of class inherit, modelling the 
Mendel’s inheritance in which the child’s allele is chosen at random from the two parents, pg and 
mg, here as the sequence of the observed outcome of a fair coin toss.  
 
For illustration according to Dawid et al. (2002), the data for marker FES are child genotype cgt = 
{B, B}, mother’s genotype mgt = {A, B} and putative father’s genotype = {A, B}. The population 
allele frequencies are pA = 0.28425 and pB = 0.25942.  
 
After specifying the network, put it to run and then insert the evidence. Considering equal prior 
probabilities for the query node representing the hypotheses, the likelihood is got after inserting the 
evidence. The likelihood ratio, based on the data for this marker, is obtained from the marginal 
posterior distribution of the query node. Thus,   6584.0|:?  EtruepftfP  and
  3416.0|:?  EfalsepftfP , and 9274.1LR , being these results in agreement with the 

algebraic approach (note that 0.5/0.25942≅1.9274). 
 

3 Paternities search in more uncommon situations 

 
When the data E  are not in the form  pfgtcgtmgt ,,  it is not possible to determine in algebraic 
form the likelihood function for the various hypotheses, i.e. to determine the weight of the genetic 
connection of the child with the putative father ancestor(s). The use of Bayesian networks allow to 
overcome these problems. These networks are a good tool to compute the likelihood functions. 
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Forwarding and backwarding the information a measure of the “strength” of the information 
available in each case is obtained. 
 
In the sequence the networks for the uncommon cases described in the introduction are presented 
each one together with a numerical example.  
 
The data considered are the same for the whole cases and are in Table 1 where five different 
markers are considered and the respective genotypes for the mother, the child, the grandfather, the 
uncle and the grandfather brother, where * indicates rare alleles, and (a) signs alleles considered as 
good discriminate markers, with more than 10 alleles in each marker. 
 
 
Table 1: 

Genetic profiles 
 
In Table 2 the respective allelic frequencies are presented: pi is the i allele frequency in the 
population. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Allele frequencies 
The allelic frequencies used were collected in 
 www.uni.duesseldorf.de/WWW/MedFak/Serology/dna.htm  
for Portugal (Azores and Madeira archipelagos not included). 
 

Marker mgt cgt gfgt ungt gfbgt 
D3S1358 16, 18 13*, 16 13*, 17 13*, 16 13*, 15 
VWA 16, 17 13*, 16 13*, 16 16, 18 13*, 15 
D16S539 11, 12 12, 12 9, 12 10, 12 12, 13 
D8S1179 12, 13 13, 17* 14, 17* 14, 15 12, 17* 
D21S11(a) 29, 31.2 29, 31.2 29, 31.2 28, 31.2 29, 30 

Marker Frequencies 

D3S1358 p13 p15 p16 p17 p18 

0.0032 0.2611 0.2477 0.2065 0.1606 
VWA p13 p15 p16 p17 p18 

0.0023 0.1216 0.2300 0.2649 0.1859 

D16S539 p9 p10 p11 p12 p13 

0.1431 0.0545 0.3009 0.2876 0.1654 

D8S1179 p12 p13 p14 p15 p17 

0.1351 0.3028 0.2178 0.1223 0.0031 

D21S11(a) p28 p29 p30 p31.2 

0.1674 0.2136 0.2437 0.1138 
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4 Only putative grandfather information  

 
Bayesian networks for more complex problems can be built out of the same fundamental local 
modules that we have already described for the simple paternity dispute problem, Dawid et al. 
(2002).  
 
The object-oriented Bayesian network for the “only putative grandfather information” case is shown 
in Figure 2. Note, for example, the node gfgt (grandfather genotype) and the respective connections 
with the other nodes. 
 

 
 

 
Figure 2: Only putative grandfather network 

 
The results obtained are in Table 3. In the last column Rescaled – corrected so that the sum of the 
entries is equal to 1 – is presented the result for the 5 markers. Since the markers are independent 
the final result is obtained by multiplying the result obtained for each marker. 
 
 

 D3S1358 VWA D16S539 D8S1179 D21S11 Rescaled 
 EHP P

 0.9874 0.9909 0.5779 0.9878 0.6255 0,999999 
 EHP D

 0.0126 0.0091 0.4221 0.0122 0.3745 6,33E-07 
 

Table 3: Analysis results with only putative grandfather information 
 
 

5 Only putative uncle information 

 
The object-oriented Bayesian network for the “only putative uncle information” case is shown in 
Figure 3.  
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Figure 3: Only putative uncle network 
 
The results obtained are in Table 4 following the same methodology as in section 5.  
 

 D3S1358 VWA D16S539 D8S1179 D21S11 Rescaled 
 EHP P

 0.9874 0.3333 0.5779 0.3333 0.5582 0,97133 
 EHP D

 0.0126 0.6667 0.4221 0.6667 0.4418 0,02867 
 

Table 4: Analysis results with only putative uncle information 
 
 

6 Only putative father ‘s uncle information 

 
In Figure 4 the object-oriented Bayesian network for the “only putative father’s uncle information” 
case is shown.  
 
It is a network  more complex than the former ones owing to the further parentage relationship 
considered, that implies more complex genetic connections. 
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Figure 4: Only putative father ‘s uncle network 

 
The results obtained are in Table 5. 
 

 D3S1358 VWA D16S539 D8S1179 D21S11 Rescaled 
 EHP P

 0.9755 0.9822 0.5423 0.9762 0.5309 0,999992 
 EHP D

 0.0245 0.0178 0.4577 0.0238 0.4691 8,28E-06 
 

Table 5: Analysis results with only putative father ‘s uncle information 
 
 

7 Only simultaneously putative uncle and putative father’s uncle information 

 

 
Figure 5: Only simultaneously putative uncle and putative father’s uncle 
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The “only simultaneously putative uncle and putative father’s uncle information” case network is the last 
one presented (in Figure 5) and the results are presented in Table 6. 
 
 

 D3S1358 VWA D16S539 D8S1179 D21S11 Rescaled 
 EHP P

 0.9875 0.9650 0.5764 0.9536 0.5707 0,999988 
 EHP D

 0.0125 0.0350 0.4236 0.0464 0.4293 1,23E-05 
 

Table 6: Analysis results with only simultaneously putative uncle and putative father’s uncle 
information 

 

8 Conclusions 

 
The paternities search in more uncommon cases demands the calculation of probabilities in the 
context of numerous and complex successive uses of Bayes Law. This situation is impossible to be 
treated algebraically. It was shown that the object-oriented Bayesian networks are a very powerful 
tool, very simple to use, that allows the referred calculations in an efficient way. 
 
The major problem is to build the network taking in account the various and complex connections 
that may occur in parentage relationships. Then the use of an adequate software as Hugin or SPSS 
makes easy to apply it in practical cases. In this work Hugin was the chosen.  
 
Inspecting the tables of results one can note that, as expected, rare alleles shared lead to greater 
probabilities of true paternity. On the contrary, more frequent alleles shared lead to lesser 
probabilities. 
 
With the particular data used the final probabilities for true paternity were in general great. 
 
 
References 
 
[1] ABRANTES, D., PONTES, M. L., PINHEIRO, M. F., ANDRADE, M. and FERREIRA, M. 

A. M.: Towards a systematic probabilistic evaluation of parentage casework in forensic 
genetics: A modest attempt to define a general standardized approach to simple and complex 
cases. Forensic Science International: Genetics Supplement Series 1, pp. 635-637, 2008. 

[2] ANDRADE, M.: A Estatística Bayesiana na Identificação Forense – análise e avaliação de 
vestígios de DNA com redes Bayesianas. PhD Thesis, ISCTE, Lisboa, 2007. 

[3] ANDRADE, M.: A Note on Foundations of Probability. Journal of Mathematics and 
Technology, vol.. 1 (1), pp 96-98, 2010. 

[4] ANDRADE, M., FERREIRA, M. A. M. and FILIPE, J. A.: Evidence evaluation in DNA 
mixture traces. Journal of Mathematics, Statistics and Allied Fields (Scientific Journals 
International-Published online), vol. 2 (2), 2008. 

[5] ANDRADE, M., FERREIRA, M. A. M., FILIPE, J. A. and COELHO, M.: Paternity dispute: 
is it important to be conservative?. Aplimat – Journal of Applied Mathematics, vol. 1 (2), 
2008. 



 
 
 

Aplimat – Journal of Applied Mathematics

 

   volume 4 (2011), number3
 
 

164

[6] ANDRADE, M. and FERREIRA, M. A. M.: Bayesian networks in forensic identification 
problems. Aplimat - Journal of Applied Mathematics, vol. 2 (3), pp. 13-30, 2009. 

[7] ANDRADE, M. and FERREIRA, M. A. M.: Civil Identification Problems with Bayesian 
Networks Using Official DNA Databases. Aplimat-Journal of Applied Mathematics, vol. 3  
(3), pp. 155-162, 2010. 

[8] ANDRADE, M. e FERREIRA, M. A. M.: Solving civil identification cases with DNA profiles 
databases using Bayesian nerworks. Journal of Mathematics and Technology, 1(2), pp. 37-40, 
2010. 

[9] ANDRADE, M. e FERREIRA, M. A. M.: Evaluation of Paternities with less usual Data 
using Bayesian Networks. IEEE Xplore (BMEI 2010 IEEE Catalog Number CFP1093D-PRT, 
ISBN: 978-1-4244-6496-8), 2010. 

[10] ANDRADE, M., FERREIRA, M. A. M.,ABRANTES, D., PONTES, M. L. e PINHEIRO, M. 
F.: Object-oriented Bayesian Networks in the evaluation of paternities in less usual 
environments. Journal of Mathematics and Technology, 1(1), pp. 161-164, 2010. 

[11] DAWID, A. P., MORTERA, J., PASCALI, V. L. and van BOXEL, D. W.: Probabilistic 
expert systems for forensic inference from genetic markers. Scandinavian Journal of Statistics  
vol. 29, pp. 577-595, 2002. 

[12] FERREIRA, M. A. M. and ANDRADE, M.: A note on Dawnie Wolfe Steadman, Bradley J. 
Adams, and Lyle W. Konigsberg, Statistical Basis for Positive Identification in Forensic 
Anthropology. American Journal of Physical Anthropology 131: 15-26 (2006). International 
Journal of Academic Research, vol. 1 (2), pp. 23-26, 2009. 

[13] LAURITZEN, S. L.: Bayesian networks for forensic identification Problems. Tutorial 19th 
Conference on Uncertainty in Artificial Intelligence,  Mexico, 2003. 

 

Current address 
 
Marina Andrade, Professor Auxiliar 
ISCTE – Lisbon University Institute 
UNIDE - IUL 
Av. Das Forças armadas 
1649-026 Lisboa 
Telefone: + 351 21 790 34 05 
Fax: + 351 21 790 39 41 
e-mail: marina.andrade@iscte.pt 
 
 
Manuel Alberto M. Ferreira, Professor Catedrático 
ISCTE – Lisbon University Institute 
UNIDE - IUL 
Av. Das Forças armadas 
1649-026 Lisboa 
telefone: + 351 21 790 37 03 
fax: + 351 21 790 39 41 
e-mail: manuel.ferreira@iscte.pt 

 



 

 

 
THE  BANKING   EFFICIENCY   MEASUREMENT  

USING   THE  FRONTIER   ANALYSIS   TECHNIQUES 
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Abstract. The research focus of the scientific paper is on the problem of performance 
measurement of credit institutions. The author recommends applying frontier analysis 
techniques such as Data Envelopment Analysis and Stochastic Frontier Approach to the 
efficiency analysis of Decision Making Units. Using modern computer technologies, the author 
has calculated dynamics of efficiency score of ten Latvian banks on the basis of DEA CCR 
approach, provided recommendations concerning optimal input volumes and established hidden 
development reserves using SFA method. 
 
Key words: DEA (Data Envelopment Analysis), Decision Making Units (DMUs), efficiency 
measurement, SFA (Stochastic Frontier Approach) 
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Introduction 

 
The remaining uncertainty in development of Latvian national economy and the absence of 
significant improvement of economical situation impacts activities of all economical subjects. Due 
to this fact, credit institutions that are performing redistribution of income inside of the country are 
especially vulnerable. In June 2010 21 banks and seven branches of foreign banks were functioning 
in Latvia that is indicative of increasing level of competition in the banking sector. Due to the 
absence of improvement in quality of credit portfolio, the volumes of reserves for non-performing 
loans in the first current half-year have reached 1,671 million LVL. Operating profits of Latvian 
banks continue decreasing, mainly because of credit impairments that made 49,3% of total banking 
losses (430,3 million LVL) in the end of June 2010. These negative macroeconomical trends that 
have impact on activities of credit institutions are indicative of necessity of strong control over 
banking performance. 
Actually the estimation of the level of operating efficiency in the most Latvian banks is realized on 
the basis of quantitative approach of ratio analysis. Ratios measure the relationship between two 
variables chosen to provide insights into different aspects of the banks multifaceted operations, such 
as liquidity, profitability, capital adequacy, asset quality, risk management, and many others. 
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Although the traditional ratio measures are attractive to analysts due to their simplicity, there are 
several limitations that must be considered. For example, the analysis assumes comparable units, 
which implies constant returns to scale (Smith 1990). Each of the indicators yields a one-
dimensional measure by examining only a part of the organization's activities, or combining the 
multiple dimensions into a single, unsatisfactory number. Moreover, the seemingly unlimited 
number of ratios that can be created from financial statement data are often contradictory, thus 
ineffective for the assessment of overall performance. This overly simplistic analytical approach 
offers no objective means of identifying inefficient units and requires a biased separation of the 
inefficient and efficient levels. [1, 350-351]  
Methods of frontier analysis ensure a principally different approach to the problem of efficiency 
measurement. They provide an opportunity of complex analysis of banking efficiency level for a 
certain period of time and comparison of it among investigated banks. This multidimensional 
approach meets the requirements to the banking performance evaluation methodology. The 
objective of the author’s research is to improve and supplement the methodology of efficiency 
measurement of Latvian banks on the basis of methods of frontier analysis. 
In the circumstances of unstable macroeconomical environment and competition, profitability is one 
of the most important indicators of stability and development of credit institutions. In this 
connection, the author analyzed the performance of a set of Latvian banks, assuming operating 
profits as an output. The objects of the research are members of Latvian banking sector; their 
efficiency level is analyzed over the time period from 2003 to 2009. Evaluating the performance on 
the basis of frontier approaches, the author included into the set of investigated objects banks that 
take leading positions on Latvian market (according to the volumes of total assets): JSC 
“Swedbank”, JSC “DnB Nord Banka”, JSC “Aizkraukles Banka”, JSC “Parex banka” (currently 
JSC “Citadeles Banka”), JSC “SEB Banka”, JSC “Latvijas Krājbanka”, JSC “Mortgage Bank”, JSC 
“Rietumu Banka”, JSC “Norvik Banka”, JSC “GE Money Bank” with the exception of branches of 
foreign banks. 
 
 
1 Methods of Frontier Data Analysis 

 
The progress of production technology and increase of production volumes have stimulated the 
development of performance measurement methodology. In the second part of the 20th century 
there were introduced methods of frontier data analysis that provided a qualitatively different 
approach to the problem. According to the methodology of methods of frontier data analysis, the 
efficiency score of investigated DMUs is calculated as a distance from the point that defines the 
production process of a Decision Making Unit (DMU) to the certain efficiency frontier. Entities that 
are functioning on the efficiency frontier are considered to be absolutely technically efficient; 
inefficiency of other DMUs is increasing together with extension of the distance to the efficiency 
frontier.  
Methods of frontier analysis may be divided into two groups: parametric (Stochastic Frontier 
Approach (SFA), Distribution-Free Approach (DFA), Thick Frontier Approach (TFA)) and non-
parametric (Data Envelopment Analysis (DEA), Free Disposal Hull (FDH)) methods. In accordance 
with parametric approaches, the efficiency frontier is constructed on the basis of econometric 
modeling, usually in form of Cobb-Douglas (log-linear) production function. Econometric analyses 
include two error components: an error term that captures inefficiency (ui) and a random error (vi). 
Parametric methods have significant advantages – they provide the possibilities to use panel data, to 
distinguish the random noise from inefficiency and to calculate the standard error of efficiency 
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measurement results. Nevertheless, the stochastic approaches of performance measurement presume 
the comparison of investigated DMUs efficiency to the theoretically developed benchmark frontier; 
therefore the optimal combinations of inputs and outputs sometimes are not achievable practically. 
The application of parametric methods also requires observance of the restrictions imposed on the 
distributional assumptions on the inefficiencies and random error. In contrast to the econometric 
approaches, non-parametric methods are based on the hypothesis that the efficiency frontier is 
generated from the empirical results of the most efficient DMUs i.e. benchmarks that „float” on the 
piecewise linear frontier. The level of technical efficiency of these DMUs is 100%. While 
mathematical, non-parametric methods require few assumptions when specifying the best-practice 
frontier, they generally do not account for random errors. [8, 93] 
 
 
1.1 Data Envelopment Analysis (CCR DEA Model) 
 
The CCR DEA model was developed by Charnes, Cooper and Rhodes in 1978 to evaluate the 
performance of Decision Making Units (DMUs). To allow for applications to a wide variety of 
activities, the term DMU might be used to refer to any entity that is to be evaluated in terms of its 
abilities to convert inputs into outputs. These evaluations can involve governmental agencies and 
non-profit organizations as well as business firms, hospitals and educational institutions.  
The production process might be aimed either at minimization of resources or maximization of 
production volumes. The orientation of the model should be aimed at controllable variables. In 
context of banking, volumes of resources are usually over control of management; therefore only 
input-oriented model will be examined in the paper. 
The measurement of comparative efficiency is based on the assumption that the performance of 
each DMU is calculated in comparison to n investigated DMUs. Each DMU consumes varying 
amounts of m different inputs to produce s different outputs. Specifically, DMUj consumes amount 
xij of input i and produces amount yrj of output r. It is necessary to assume that xij ≥ 0 and yrj  ≥ 0 
and further to assume that each DMU has at least one positive input and one positive output value. 
Primarily the DEA model was expressed in fractional, i.e. ratio-form. In this form the ratio of 
outputs to inputs is used to measure the relative efficiency of the DMUj = DMU0 to be evaluated 
relative to the ratios of all of the j = 1,2, ..., n DMUj. The CCR construction can be interpreted as 
the reduction of the multiple-output/multiple-input situation (for each DMU) to that of a single 
'virtual' output and 'virtual' input. For a particular DMU the ratio of this single virtual output to 
single virtual input provides a measure of efficiency that is a function of the multipliers. In 
mathematical programming parlance, this ratio, which is to be maximized, forms the objective 
function for the particular DMU being evaluated. A set of normalizing constraints (one for each 
DMU) reflects the condition that the virtual output to virtual input ratio of every DMU, including 
DMUj = DMU0, must be less than or equal to unity. The mathematical programming problem may 
thus be stated as (1): 
 
   
 
 
 
 
where  

h0 – the function of virtual output and virtual input ratio of DMU0; 
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ur – the output multiplier of DMU0; 
vi – the input multiplier of DMU0; 
yr0 – the output of DMU0; 
xi0 – the input of DMU0; 
yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs. 
                                     

 
The above ratio form yields an infinite number of solutions; if (u*, v*) is optimal, then (αu*, αv*) is 
also optimal for α > 0. However, the transformation developed by Charnes and Cooper (1962) for 
linear fractional programming selects a representative solution [the solution (u, v) for which  
and yields the equivalent linear programming problem in which the change of variables from (u, v) 
to (μ, ν) is a result of the Charnes-Cooper transformation (2): 
 
 
 
 
 
 
 
where 
z – the CCR input-oriented function of DMU0 (multiplier form); 

 
μr – the output multiplier of DMU0; 
νi – the input multiplier of DMU0; 
yr0 – the output of DMU0; 
xi0 – the input of DMU0; 
yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs. 

 
 
Model that is expressed by (2) can be solved by its dual problem (3): 
 
 
 
 
 
 
 
 
 
 
where 

θ* – the optimal value of dual variable θ of DMU0; 
θ, λj – dual variables of DMU0; 
yr0 – the output of DMU0; 
xi0 – the input of DMU0; 
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yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs. 
 

By virtue of the dual theorem of linear programming we have z* = θ. Hence either problem may be 
used. One can solve the dual linear program, to obtain an efficiency score. Setting θ = 1 and λk* = 1 
with λk = λo* and all other λk* = 0, a solution of dual problem (see Formula 3) always exists. 
Moreover this solution implies θ* ≤ 1. The optimal solution, θ*, yields an efficiency score for a 
particular DMU.  
The process is repeated for each DMU. i.e., solving the model, expressed by Formula 3, with (Xo, 
Yo) = (Xk, Yk), where (Xk, Yk) represent vectors with components xik , yrk and, similarly (Xo, Yo) has 
components xok , yok. DMUs for which θ* < 1 are inefficient, while DMUs for which θ* = 1 are 
boundary points. Some boundary points may be "weakly efficient" because we have non-zero 
slacks. This may appear because alternate optima may have non-zero slacks in some solutions, but 
not in others. However, we can avoid this effect by invoking the following linear program in which 
the slacks are taken to their maximal values (4). 
 
    
 
 
 
 
 
 
where 
si

– – input slacks; 
sr

+ – output slacks; 
θ* – the optimal value of dual variable θ of DMU0; 
λj – the dual variable of DMU0; 
yr0 – the output of DMU0; 
xi0 – the input of DMU0; 
yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs. 

 
It shall be noted that the choices of si

– and sr
+ do not affect the optimal θ* which is determined from 

model expressed by (3). These developments lead to the following definitions of DEA efficiency: 
DEA Efficiency: The performance of DMU0 is fully (100%) efficient if and only if both (i) θ* = 1 
and (ii) all slacks si

–*  = sr
+*  = 0.  

Weakly DEA Efficiency: The performance of DMU0 is weakly efficient if and only if both (i) θ* = 
1 and (ii) si

–*≠ 0 and/or sr
+*≠ 0 for some i and r in some alternate optima. [2, 8-12] 

The CCR efficiency score is indicative of the overall efficiency level of investigated DMUs. 
 
 

2 The Stochastic Frontier Approach 
 
The Stochastic Frontier Approach (SFA) is the econometric method of efficiency estimation. It 
presumes a certain functional form for the description of the process of production. The 
performance of investigated banks is estimated on the basis of stochastic Cobb-Douglas production 
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function. The SFA method allows estimating the level of technical efficiency. Assuming that the 
production function is depending on several factors x1,...,xn, its functional form is y = F (x1,...,xn), 
and the functioning bank using a similar volume of resources can produce at least the same volume 
of production if: y = F (x1,...,xn) exp(-u) ≤ F (x1,...,xn) where u > 0. Exp(-u) expresses the level of 
technical inefficiency of investigated objects. Due to the competition in the banking sector, the 
author recommends to use the stochastic model with time-varying technical efficiency for panel 
data (5): 
 

)5(,lnln 0 ititnit
n

ntit uvxy  

where 
yit – panel data of production (output) volumes; 
βot – frontier intercept (constant); 
βn – vector of of technological parameters; 
xnit – panel data of resources (input) volumes; 
vit – random error term for panel data; 
uit – inefficiency error term for panel data. 

 
The Stochastic Frontier Approach model includes two error components: an error term that captures 
inefficiency (uit) and a random error (vit). It is impossible to calculate the precise value of 
inefficiency, because of its composite structure. Due to this, the result of efficiency measurement is 
the conditional expectation of its value (6): 
 

 ûit = E(uit ׀ vit – uit = êit)              (6) 
where 

ûit – modeled  inefficiency error term for panel data; 
uit – inefficiency error term for panel data; 
vit – random error term for panel data; 
êit – modeled random error term for panel data without inefficiency error term. 

 
 

3 The Application of Multistage Approach to the Efficiency Measurement of Latvian 
Banks 
 
3.1 Methodology of the Research 
 
It is possible to view stochastic frontier regressions as competing with DEA. Carried to an extreme 
the two approaches, DEA vs. Stochastic Frontier Regressions, can be regarded as mutually 
exclusive – as in Schmidt (1985). An alternative view is also possible in which the two approaches 
can be used in complementary fashion. Ferrier and Lovell (1990), for example, use two approaches 
to cross-check each other. In this approach, the objective is to avoid what Charnes, Cooper and 
Sueyoshi (1988) refer as „methodological bias”. Indeed, going a step further, it is possible to join 
the two approaches in the multistage methodology of efficiency evaluation. [6, 292-293] 
The problem of keeping profitability is especially actual and important in the circumstances of 
unstable macroeconomical environment. In this connection, there is developed a concept of 
efficiency measurement of Latvian banks in the research, assuming operational profit to be an 
output while interest expense, personnel costs and credit impairments are defined as inputs.  
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The first stage of the performance evaluation will be completed on the basis of DEA CCR approach 
that allows calculating overall efficiency score and optimal volumes of inputs. The second stage of 
the research is realized using SFA method that provides a possibility of cross-checking and 
identification of hidden reserves of development. 
 
 
3.2 Efficiency Measurement Results of Latvian Banks on the Basis of CCR DEA Approach 
 
The results of banking performance evaluation on the basis of CCR input-oriented model, assuming 
operating profit as an output, are represented in Figure 1. 

 

 0,00

 0,20

 0,40

 0,60

 0,80

 1,00

2003 2004 2005 2006 2007 2008

Latvijas Krājbanka Swedbank
DnB Nord Bank Mortgage Bank
Aizkraukles Banka Parex Banka
Rietumu Banka SEB Banka
Norvik Banka GE Money Bank

 
Fig. 1. Dynamics of banking CCR efficiency score, (%)  

 
The application of DEA approach requires the determination of assumptions, concerning orientation 
measures of the model and the concept of returns to scale (RTS). The banking production process 
may be aimed either at minimization of resources (input-oriented) or maximization of production 
volumes (output-oriented). It is emphasized in the international researches that the orientation of the 
model should be aimed at controllable variables. Usually volumes of resources are considered to be 
over control of banking management, therefore there is applied the assumption of input orientation 
in the research. Since the constant returns to scale CRS approach represents the total (overall) 
efficiency level, CCR DEA model is considered to be the basic concept of the research. 
The results of the efficiency measurement approve that the average level of performance of 
investigated banks has diminished to 76,54% in 2008. The highest overall efficiency (84,58%) was 
observed in 2006 that is concerned with the increase of crediting activity in the banking sector. The 
redistribution of leaders’ positions among investigated objects is among important trends that are 
characterizing the dynamics of the efficiency score. 
JSC “Rietumu Banka” has demonstrated the best result, operating on the efficiency frontier during 
all periods of the observation. The long-term stability of the efficiency level of JSC “Rietumu 
Banka” is indicative of its ability to maximize the volume of output using minimal volumes of 
inputs and to ensure optimal proportions of output and inputs in the process of production, thus of 
both 100% technical and scale efficiency in comparison to the set of investigated banks. The 
maximal overall efficiency of “Rietumu Banka” is confirmed by its successful strategy and 



 
 
 

Aplimat – Journal of Applied Mathematics

 

   volume 4 (2011), number3
 
 

172

consistent management activities. The target customer group of JSC “Rietumu Banka” consists of 
legal entities and private customers with high level of income, mainly nonresidents. Other financial 
indicators justify high efficiency level of JSC “Rietumu Banka”: its profit for the nine months of 
2010 is 4 million euro, the capital adequacy ratio is 18.17% and liquidity ratio – 53.85%. 
To improve the performance of inefficient banks, it is important to determine, which proportions of 
resources will maximize the overall efficiency level (see Table 1). 

Table 1 
CCR virtual input volumes in 2003 (thsd. LVL) 

  

Virtual input 
(Personnel costs), 

reduction (%) 

Virtual input 
(Interest 
expense), 

reduction (%)

Virtual input 
(credit 

impairments), 
reduction (%) 

Latvijas Krājbanka 
3 046,43 
(45,81%) 

1 596,09   
(56,72%) 

560,30     
(45,81%) 

Swedbank 
8 164,16 
 (19,53%) 

9 550,00   
(32,93%) 

3 657,19   
(21,60%) 

DnB Nord Bank 
2 246,81 
(39,11%)

1 178,92   
(59,25%)

248,43    
(39,11%)

Mortgage Bank 
2 485,19 
(48,94%)

2 907,04  
(58,43%)

1 113,26   
(54,69%)

Aizkraukles Banka 
3 375,00 
 (0,00%) 

1 768,00 
(0,00%) 

643,00    
(0,00%) 

Parex Banka 
11 394,03  
(23,23%) 

13 328,13  
(24,35%) 

5 104,04   
(57,13%) 

Rietumu Banka 
5 308,00 
(0.00%) 

2 788,00  
(0.00%) 

319,00      
(0.00%) 

SEB Banka 
7 600,51 
 (32,31%) 

8 890,67  
(34,99%) 

3 404,70   
(33,89%) 

Norvik Banka 
2 056,00 
 (0,00%) 

2 405,00  
(0,00%) 

921,00    
(0,00%) 

GE Money Bank 
2 359,88  
(33,22%) 

1 239,08  
(45,96%) 

182,97     
(33,22%) 

 
JSC “Swedbank” and JSC “Latvijas Krājbanka” have improved their performance during the 
investigated period significantly. In 2008 both credit institutions were functioning on the efficiency 
frontier, having 100% CCR efficiency score. Despite of growing interest expenses and impairment 
losses JSC “Swedbank” and JSC “Latvijas Krājbanka” have succeeded in keeping and increasing 
volumes of operating revenues.  JSC “Aizkraukles Banka” and JSC “Norvik Banka” were fully 
efficient in 2003 and 2005, but both credit institutions have lost their leading positions by the end of 
the investigation period.  
The DEA approach provides a possibility to calculate the volumes of virtual optimal inputs. 
According to the data in Table I, the CCR projection requires significant reduction in inputs, 
especially for JSC „DnB Nord Bank“, JSC “Latvijas Krājbanka”, JSC „Mortgage Bank“ and JSC 
„Parex Banka“. It is necessary to emphasize that interest expense and impairment losses have a 
stronger impact on the overall efficiency level than personnel costs. The average efficiency in the 
year 2008 has remained on the same level as in 2003. Nevertheless, the improvement of 
profitability of two banks could be achieved only after dramatic decrease of input volumes: JSC 
“Parex Banka” should cut its interest expense and impairment losses by 61,34% and 68,51% 
respectively in order to operate on the efficiency frontier (see Table 2). However, the optimization 
of JSC “GE Money Bank” input volumes is concerned with diminishing of its personnel costs by 
71,72% and credit impairment costs by 61,96%. 
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Table 2 

CCR virtual input volumes in 2008 (thsd. LVL) 

  

Virtual input 
(Personnel costs), 

reduction (%) 

Virtual input 
(Interest 
expense), 

reduction (%)

Virtual input 
(credit 

impairments), 
reduction (%) 

Latvijas 
Krājbanka 

11 369,00 
(0,00%) 

22 260,00   
(0,00%) 

5 200,00     
(0,00%) 

Swedbank 
34 582,00 
 (0,00%) 

184 127,00   
(0,00%) 

52 807,00   
(0,00%) 

DnB Nord 
Bank 

8 814,21 
(23,60%)

46 930,03   
(39,88%)

13 459,37    
(34,88%)

Mortgage 
Bank 

6 605,38 
(30,83%)

23 945,69  
(45,66%)

6520,30   
(30,83%)

Aizkraukles 
Banka 

9 042,89 
 (42,46%) 

18 575,23 
(38,78%) 

11 437,03    
(38,78%) 

Parex Banka 
19 416,46  
(61,34%) 

48 615,17  
(61,34%) 

34 154,96   
(68,51%) 

Rietumu 
Banka 

12 526,00 
(0,00%) 

26 515,00  
(0.00%) 

22 433,00     
(0.00%) 

SEB Banka 
19 229,25 
 (13,76%) 

93 696,12  
(13,76%) 

30 077,98  
(16,14%) 

Norvik 
Banka 

7 375,69 
 (25,88%) 

16 022,55  
(25,88%) 

9 769,03    
(25,88%) 

GE Money 
Bank 

2 621,86  
(71,72%) 

5 549,95  
(40,41%) 

4 695,53     
(61,96%) 

 
 
3.3 Efficiency Measurement of Latvian banks on the Basis of Stochastic Frontier 
Approach 
 
The first stage of the performance analysis provides information concerning both DEA overall 
efficiency scores and optimal input volumes. In accordance with the approach of Data Envelopment 
Analysis, the efficiency frontier is generated from the empirical results of the most efficient 
Decision Making Units i.e. benchmarks that „float” on the piecewise linear frontier; therefore some 
of investigated objects are 100% efficient. Nevertheless, it is important to identify hidden efficiency 
reserves even for fully CCR-efficient DMUs. It is achievable on the basis of Stochastic Frontier 
Approach technique. Due to this method, the efficiency frontier is constructed using principles of 
econometrical modeling that allows estimating the performance in comparison to the theoretically 
developed efficiency frontier. 
The application of SFA method requires specifying the functional form of the efficiency estimation 
model. The author has used the log-linear model specification, as in (5). In accordance with the 
basic concept of the research, operational profits are presumed to be an output while interest 
expense, personnel costs and credit impairments are defined as inputs. Due to the composite 
structure of the model error, there are applied Ordinary Least Squares (OLS) and Maximum 
Likelihood Estimation (MLE) methods in the efficiency analysis. vi and ui are assumed to be normal 
and half-normal distributed, respectively. The calculations are accomplished using the FRONTIER 
4.1. program (see Table 3). 
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Table 3 
Coefficients of the efficiency measurement model on the basis of Stochastic Frontier Approach 

Parameters of the model Coefficient Standard 
errors 

Beta 0 (constant) 0.28 0.70 
Beta 1 (personnel costs) -0.77 0.12 
Beta 2 (interest expense) 0.88 0.69 
Beta 3 (impairment losses) 0.72 0.13 

 
On the one hand, it is possible that on the basis of MLE algorithm due to distributional assumptions 
concerning composite error terms there is calculated a local extremum of the log-likelihood 
function. On the other hand, the results of efficiency measurement correspond to the economical 
intuition: after optimization of input volumes 100% CCR-efficient banks proved to be 83-86% 
efficient on the basis of SFA method, demonstrating minimal volatility of the efficiency score 
during the period of the research (see Figure 2).  
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Fig. 2. The average technical efficiency score on the basis of Stochastic Frontier Approach, (%) 
 
 

Conclusions 
 

The scientific paper is devoted to the performance measurement problem of Latvian credit 
institutions. The standard methods of efficiency measurement, such as quantitative ratio analysis, 
ratings and regression analysis do not provide the possibility of multidimensional efficiency 
evaluation. The methodology of frontier methods is considered to be a sophisticated tool for 
efficiency measurement that allows the investigation of complex production processes among a set 
of Decision Making Units (DMUs). According to the information that is available to the author, 
Latvian banks to the efficiency measurement currently do not apply methods of frontier data 
analysis.  
The author has implemented the multistage approach, analyzing efficiency scores of a set of Latvian 
banks using CCR DEA and SFA techniques. JSC “Rietumu Banka” has demonstrated the best 
result, operating on the efficiency frontier during all periods of the observation. There were 
calculated volumes of weighted optimal inputs that provide the possibility to maximize the overall 
efficiency score, using DEA technique. Using the Stochastic Frontier Approach, it was stated that 
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even after optimization of input volumes there is still a possibility to improve the banking 
performance by 17% in the year 2009.  
According to the obtained results of the research, the author recommends to improve the 
methodology of efficiency measurement of Latvian banks on the basis of multistage application of 
frontier analysis methods. 
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Abstract. Calendar effects concern special days such as Christmas and Eastern and usually are 
associated with economic activity fluctuations. In analysis in which time series are seasonally 
adjusted it is necessary to detect and correct these calendar effects using suitable procedures. 
This article compares different methods of processing of these effects using spectral analysis, 
recursive estimation, information criteria and t -statistics. The proposed procedure is applied to 
time series of Industrial Production Index of the Spanish province of Álava. Results indicate 
that simpler models can achieve better results, but preclude the identification of particular 
calendar effects. Furthermore, adjustment of classical calendar effects by simple models may be 
insufficient in some time series, because their duration and impact may vary between countries 
and sectors. 
 
Key words. Calendar effect, TRAMO, time series, seasonal adjustment, spectral analysis, 
recursive estimation, information criteria 
 
Mathematics Subject Classification:  Primary 62M10, 91B84; Secondary 91B82. 

 
 
1 Introduction 
 
Time series of many economic variables are significantly influenced by various factors related to 
the calendar. These factors include non-working days, leap years, holidays etc. There is no general 
definition or uniform procedure for processing of these events, which are known as calendar effects. 
Calendar effects can be divided into two groups. The first group includes the effects of working (or 
trading) days and the second group deals with special calendar effects, such as Christmas, Easter or 
holidays. These effects have to be taken into account during the data processing and various 
methods of seasonal adjustment related with these effects must be applied. 
In this paper we compare different methods of correction of the calendar effects using various 
statistical procedures which are applied to time series of Industrial Production Index (IPI) of the 
Spanish province of Álava (Basque). They are based heavily on free software package TSW which 
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consists of two parts - TRAMO and SEATS. This software is used for seasonal adjustment of time 
series by National Statistical Institutes (NSI) in many European countries. 
This article is organized as follows. In Section 2 different methodological approaches for the 
adjustment of calendar effects are described and in Section 3 alternative models for adjustment of 
time series are presented. In Section 4 we describe obtained results and in Section 5 these results are 
summarized. 
 
 
2 Methodology 
 
There are many different methods for correction of calendar effects. Our analysis is focused on the 
linear regression method because Eurostat recommends European NSI to use this method. 
Corrections of working (or trading) days are derived from the estimation of the linear regression. 
Therefore the calendar structure can be modelled using some explanatory variables according to the 
following model: 
 

ttt vxy   ,           (1) 

      TtLvLL tt ,,2,1   , 

 
where ty  is the observed time series, tv  are error terms which follow an ARIMA process,  L , 

 L  and  L  are finite polynomials of the lag operator1 L, tx  is a vector  1K  of K  relevant 

explanatory variables,   is a vector  1K  of unknown parameters and t  is an error term defined 

as white noise. 
Component tx  represents nonstochastic effects which are subtracted from the original series 

before applying the ARIMA methodology for decomposition of the time series into trend/cycle, 
seasonal and irregular component. The simplest nonstochastic effect, which is one of many that are 
subtracted from the original series, is the average (regression constant). More complex effects are 
for example the intervention variables, atypical observations or calendar effects.  
Each time period (month, quarter, etc.) is characterized by different number of Mondays, Tuesdays, 
Sundays, therefore economic activity can be affected by this fact. For example, one working day 
guarantees a certain level of production of an enterprise, but lower income for firms related to 
tourism. 
The working days effect distinguishes working days from weekend days, and that is why special 
variable ( twe ) is usually used in the literature to express the weighted difference between the 

number of working days ( tw ) and non-working days ( tnw ) during the period t . This is defined as 







  ttt nwwwe

2

5
,         (2) 

where the number of non-working days is multiplied by 5/2 so that the average of the newly created 
variable was zero. The coefficient of the variable twe  includes the effect of additional working days 

in the period t  (month or quarter). 

                                                 
1 Polynomial  L  includes unit roots of regular and seasonal differences,  L  represents the stationary 

autoregressive component and  L  is an invertible moving average polynomial. 



 
 
 

Aplimat – Journal of Applied Mathematics
 

volume 4 (2011), number 3 
 
 

179

Sometimes it is necessary to include the effect of trading days in the model which can be defined by 
the following six regressors: 
 

 1
t t tw Mon Sun  ,  2

t t tw Thu Sun  , . . .,  6
t t tw Sat Sun  ,   (3) 

 
where , , ,t t tMon Thu Sun  is the number of Mondays, Tuesdays, ...,  Sundays during the period t  

(month, or quarter). 
Eurostat and the European Central Bank also emphasize the importance of leap year correction in 
their recommendations. This type of periodicity can be modelled using the following zero mean 
variable: 
 
     0.75  if t  February of leap year 

tly  -0.25  if t   February of non-leap year    (4) 
  0.75  if t   other month as February 

 
 
3 Alternatives of the correction of the calendar effect 
 
In this section we present five models which allow for different corrections of the calendar effects. 
The model called Alternative 0 is the basic alternative because it is the most similar to the model 
which some European NSI use for the correction of the calendar effect. Other Alternatives 
generalize it by adding new variables for other possible effects (Alternative 1 and 2) or simplify it 
(Alternative 3 and 4) pursuing goodness of fit of the model and prediction power. 
 
Alternative 0 

1 2 3 4
ARIMA

t t t t tY PublicHolidaysCent we ly Error            (5) 

 
The variable twe  is defined in (2), tly v (4) and the variable tPublicHolidaysCent  is defined as 

 

t tPublicHolidaysCent PublicHolidays DF  . 

 
The variable tPublicHolidays  is the number of non-working days corresponding to Monday, 

Tuesday, ..., Friday in the month t  and DF  is the long run average of non-working days in the 
month excluding weekends. Empirically, DF  is not known. In this application the average of the 
variable tPublicHolidays  is used, which approaches the unknown value DF  if the number of 

observations is large enough. 
 
Alternative 1 

6

1 2 2
1

i ARIMA
t t i t t

i t

Y PublicHolidaysCent w Error   


         (6) 

 
The variable i

tw  is defined in (3). It means that this model analyzes the effect of trading days. 

 
Alternative 2 
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6

1 2 3 3
1

i ARIMA
t t t i t t

i t

Y PublicHolidaysCent ly w Error    


         (7) 

 
The only difference of this model and the model defined in (6) is that it includes the leap year 
correction with the variable tly defined in (4). 

 
Alternative 3  

1 2
ARIMA

t t tY WorkingDaysSinePH Error         (8) 

 
This model looks for parsimony (simplicity), because it uses only one explanatory variable 
WorkingDaysSinePH , which is defined as 
 

t t tWorkingDaysSinePH WorkingDays PublicHolidays DL   . 

 
The variable tWorkingDays  includes the number of working days and the variable 

PublicHolidays indicates the number of non-working days corresponding to Monday, Tuesday, ..., 

Friday. Variable tWorkingDaysSinePH  is centred by DL  which stands for the average number of 

working days in period t . Similar to DF  the value DL  is unknown. The average value of 

t tWorkingDays PublicHolidays  is used in this application. Variable WorkingDaysSinePH  

represents the effect of working days, trading days, Easter effect and implicitly the effect of leap 
year, higher parsimony is thereby obtained.  
 
Alternative 4 

1 2
ARIMA

t t tY CalendarEffect Error           (9) 

 
This is also a parsimonious alternative, because variable tCalendarEffect  is defined as 

 

   t t t t tCalendarEffect Workingdays PublicHolidays RDF Weekends PublicHolidays     

 
where the variable tWeekends  is the number of Saturdays and Sundays during the period t . This 

regressor is similar to the variable twe  defined in (2) but it includes the effect of non-working days 

which are not weekends. The constant 2/5 was used for centering of variable twe . For variable 

CalendarEffect  the constant RDF  is used, which is, in a long-term view, the ratio between 
working days and non-working days. In practice, this ratio is estimated by observed values, in our 
case 4.77/2.22. In this case, all the calendar effects are included in one variable CalendarEffect  and 
that is why it is not possible to identify effects of weekends, working days and leap year. 
Nevertheless, parsimony is achieved and all calendar effects can be modelled correctly. 
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4 Application: IPP of Álava 
 
Models described in the previous section are estimated by the software package TSW using 
monthly data from 01/1995 to 10/2006 of the Industrial Production Index of the Spanish province of 
Álava. The original time series is presented in the Figure 1. 
 

Figure 1: Industrial Production Index of the Spanish province Álava 
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The comparison of the estimated models is done by spectral analysis, recursive estimation, 
information criteria and t -statistics of the explanatory variables defined in (1). Monthly time series 
are characterized by pseudo-cyclic behaviour which is partly caused by the calendar effects. 
Cleveland a Devlin in [2] proposed different techniques of detection of these pseudo-cycles in 
monthly (quarterly) time series occasioned by the weekly cycle. While four cycles are expected to 
complete their period over a month, a component with fractional frequency (0.348) can still be 
presented. A second important frequency at 0.432 is also related with the calendar effect (see [2]). 
These frequencies are called calendar frequencies and can be detected in the periodogram if it 
shows peaks at both of them. In [9] a method of automatic detection of the working/trading days 
effect is analyzed according to some criterion based on the amplitude of the estimated spectrum at 
the calendar frequencies. This effect exists, if the spectrum crosses the limit of 6k  with respect to 
the adjacent frequencies, where k  is the difference between the maximum and minimum value of 
the spectrum divided by 52. This criterion is also used in the standard procedure X12-ARIMA. 
As in [9] a consistent estimation of the spectral density is obtained by fitting an autoregressive 
model of high order that can capture the inertia of the analyzed time series. That is why an AR(50) 
model is used in the application presented bellow. The estimation of the spectral density function is 
carried out in a transformed series as the original series usually contains trend and seasonal 
components which may blur the information at the calendar frequencies (leakage). Therefore the 
use of the residuals is recommended in [2] and [8], which is the procedure used in this paper. We 
calculate and display the estimated spectrum of the residuals of the ARIMA decomposition 
performed by SEATS. The estimated spectrum is evaluated on 61 frequencies 120/j , 

60,,1,0 j , which allows to take into account the seasonal frequencies ( 6,,2,1,12/ kk ). 
The frequencies 120/j  closer to the calendar frequencies 0.348, 0.432, and their adjacent 
frequencies are replaced by 0.348, 0.432 and 0.348 1 /120 ,  0.432 1 /120 respectively. 
Figure 2 shows the estimated spectral densities of the random components and residuals obtained by 
SEATS for series not treated for calendar effect (Figures a)), and for series treated according to the 
five alternatives defined in (5) - (9)) above and presented in (Figures b) - f)). The vertical lines 
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represent the seasonal (dotted lines) and calendar frequencies (full lines). Calendar effects can be 
clearly identified in the non-treated series but it is reduced with all the proposed treatments. 

Figure 2: Estimated spectral densities 
 
 Peridogram of random component             Periodogram of residuals 
 

  
 
Table 1 shows the differences between the estimated spectrum value at the calendar frequencies and 

their neighbour frequencies minus k6 , all expressed in k  units (      kksfsf /6120/1ˆˆ  , 

432,0,348,0s  for        52/ˆminˆmax lflfk ll  ), where l stands for the 61 frequencies 

considered in the analysis.  Dividing by k  standardizes the results and makes the comparison 
easier. If the differences with both adjacent frequencies have the same sign, we keep the results 
corresponding to the frequency with a spectral amplitude more similar to the one at the calendar 
frequency. If the signs are different, we show the results corresponding to the negative sign, since 
the existence of calendar effects requires both values to be positive. A positive value in the table 
therefore implies existence of calendar effect and an insufficient adjusting of the calendar effect. 
Table 1 and Figure 2 show that Alternatives 1 and 2 capture the weekly cycle well but Alternatives 
0, 3 and 4 do not adjust all this calendar effect. This is an expected result as the Alternative 1 and 2 
include more variables which allow a higher degree of flexibility. 
Recursive method for detection of the calendar effect was designed in [8]. It compares various 
alternatives using out of sample forecast errors. Let thtY  , for each t  in hTtT 0 , denote the 

forecast of htY   obtained by estimating the ARIMA model and using this estimated model to 

forecast h  steps from time t . The out of sample forecast error is ththttht YYe   . The following 

sequence of accumulated residual sums of squares is therefore analyzed: 
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Suppose there are two alternatives (Model 1 and Model 2) with forecast errors (1)
t h te  and (2)

t h te   and 

with accumulated sums  1
,h MSS  and  2

,h MSS . Then for the sake of comparison the normalized version 

of the following differences    1 2
, ,h M h MSS SS are plotted: 
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Since 0,

, ii
MhSS  for 1, 2i   the Model 1 is discarded in the case when the sequence 2,1

,MhSS  is 

increasing, as in this case its residual sums of squares are smaller. 
According to the procedure outlined in [8] we analyze the five alternative models proposed. As a 
first step the value 0T  (number of observations in the first estimation) and h  (the number of 

forecasts) is determined. In [9] an ideal value 610 T  is recommended for monthly data of ten 

years period. This means that the first estimation uses monthly observations of the first five years. 
In this paper we use the same initial value 610 T  because the number of observations of the series 

is similar. 
Regarding the parameter h , values 1h   and 12h  are proposed in [9]. If 1h , the values of the 
next month are forecasted, given observations up to the previous month. On the other hand, if 

12h  the values of the same month next year are forecasted. In this work, both horizons of 
prediction are considered but the conclusions in both cases are very similar and that is why only the 
results for 1h  are presented in the figures. 
The conclusions of recursive estimation are summarized in Table 1. The base model (Model 1) is at 
the top of the table (bold letters) and the rival models are in the first column of Table 1. 
Abbreviation Sup stands for superior, and in this case the base model is superior to the rival model, 
having lower accumulated sums (10). The opposite case is denoted as NonSup which stands for non 
superior. Alternative 4 shows the best accumulated sums of squares and Alternatives 1 and 2 have 
the worst performance.  
It is important to note that the period (01/2000-06/2001) shows different results comparing to the 
remaining periods. This is probably due to the atypical calendar effect caused by the transition from 
the Spanish Peseta to the Euro currency in the period 1999-2002. 
Table 1 also shows the information criteria BIC and AICC [1], [9], corresponding to estimations of 
the five analysed alternatives. The lowest value indicates the best model in terms of the best fit 
taking into account degrees of freedom. The smallest value of AICC and BIC corresponds to 
Alternative 3. This result is not surprising, since both indicators penalize the number of parameters 
of the estimated model. Alternatives 3 and 4 include all the possible calendar effects into one 
variable creating parsimonious models which are able to model the observed data adequately. 
However, the results of these indicators should be supplemented by the conclusions of the previous 
paragraphs, because the model selection may be dependent on the final objectives of the analysis 
and not only on the parsimony of the model. 
Regarding the t -statistics, only variables describing the effects of working days (Monday - Friday) 
are not statistically significant at the 5% significance level. The effect of Saturday and the effect of 
the leap year are considered significant at the 10% level. Generally we can say that the alternatives 
that include calendar effects only into one (Alternative 3 and 4) or three (Alternative 0) variables 
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present these effects as statistically significant. Using multiple variables for capturing of trading 
days leads to insignificant variables. 
 
Table 1. Comparison of alternative models for time series of IPI Álava 

IPP ÁLAVA 
 Alternative 
 0 1 2 3 4 
Spectral analysis      
0.348 cycle/month      
Random components 1,39 -4.69 -3,73 -1.04 -2,93 
Residuals -6,09 -7.37 -6,99 -6.08 -6.76 
0,432 cycle/month      
Random components 4.18 -1.15 -4.32 3.56 4.37 
Residuals 0.6 -3.33 -4.52 0.81 2.01 
Recursive estimation      
Alternative 0 - NonSup ** NonSup Sup Sup 
Alternative 1 Sup ** - NonSup Sup ** Sup ** 
Alternative 2 Sup ** Sup - Sup ** Sup ** 
Alternative 3 NonSup NonSup ** NonSup - Sup 
Alternative 4 NonSup NonSup ** NonSup NonSup - 
Information criteria      
AICC -813.14 -810.46 -810.76 -816.29 -813.91 
BIC -6.14 -6.06 -6.02 -6.20 -6.18 
t -statistics      
Public holidays -5.90 -6.60 -6.51   
Working days 7.79     
Leap year 1.95  1.89   
Monday  -1.45 -1.16   
Tuesday  2.28 1.99   
Wednesday  1.19 1.43   
Thursday  0.96 0.68   
Friday  1.52 1.63   
Saturday  -1.87 -1.72   
Working days sine PH    10.55  
Calendar effect     10.33 

** Difference between two alternatives is significant as of 06/2001. 
 
 
5 Conclusions 
 
The detection and correction of the calendar effects in the monthly and quarterly economic time 
series are necessary for correct interpretation of observed data as reported by Eurostat in its 
recommendations [3], [4], [5], [6]. However, there is several methods for the detection and 
modelling of these effects. In this paper we present five possible alternatives of modelling of 
calendar effects. Their comparison is made by the empirical application focused on the monthly 
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time series of IPI of Álava using four methodologies: spectral analysis, recursive estimation, 
information criteria and t -statistics. 
We conclude that only Alternative 4 is uniformly superior to the other alternatives in terms of 
recursive estimation. On the other hand, alternatives that include the effect of working days 
(Alternative 1 and 2) capture  the weekly cycle in a more comprehensive way than other 
alternatives, but they are overcome by Alternatives 3 and 4, which includes all the calendar effects 
into one variable, if forecast and information criteria are used. Regarding Alternative 0, spectral 
analysis shows that this alternative does not capture the weekly cycle completely as observed also 
in Alternative 3 and 4. Alternative 0 is the base model, which is most similar to the model that is 
likely to be used by NSI.  
This analysis indicates that the detection and correction of the calendar effect should consider other 
factors which are not included in the models of the five analysed alternatives. Firstly, the effect of 
Easter should be studied in detail, since the subsumption of Easter to public holidays may be 
inadequate. It means that the effect of Easter may be assigned to the public holiday effect but its 
effect is probably more complicated. It should be taken into account that e.g. in some provinces of 
Spain Thursday and Friday before Easter Monday are public holidays and many people take 
advantage of it for organizing their spring holidays. Secondly, it is necessary to focus on the 
atypical observations which can have important impact on the processing of calendar effects. 
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DEPENDENCE   OF   EXPENDITURES   OF   THE   CZECH   

HOUSEHOLDS   ON   FINANCIAL   POWER 
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Abstract. This contribution aims at the exploration of connection between the financial power 
of households and level and structure of their expenditures. During the research we stem from 
the assumption that total expenditures and their structure can in different income categories 
differ. For the spitting of households into several categories according to their financial power 
we use the poverty threshold and its multiples. 
 
Key words. Equalized household incomes, poverty, similarity of structures, SRÚ 2008. 
 
Mathematics Subject Classification:  Primary 62P20; Secondary 62J02 

 
 
1 Introduction 
 
The transition process and successive process of economic globalization within the frame of EU 
lead into many economic, technical, political and legislative changes which significantly (both 
positively and negatively) influenced the structure of Czech and Slovak economy and thus the 
financial potential, poverty or prosperity of inhabitants in both countries (Bartošová, 2009). The 
most important factor which can lead to significant social problems is the endangerment of fraction 
of inhabitants with the poverty. According to the estimates of the World Bank in 2007 one quarter 
of inhabitants of developing countries were considered as poor. 
 
Poverty and limited financial potential is generally one of the basic factors influencing the 
consumption of households. According to the fact that households lying beneath the poverty 
threshold have limited disposable financial resources should they consumption behavior differ from 
the behavior of households relatively wealthier (see Čermáková, 2001). It means that the structure 
of expenditures should differ according to the level of financial potential which can be considered 
as relatively very low, low, medium or high. Especially in the expenditure structure of the poorest 
and wealthiest group significant differences can be expected. 
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This contribution is a subsequent article in a series of analyses of financial potential, social situation 
and poverty in the Czech Republic and in Slovakia which were carried out in last years in the 
framework of projects GAČR 402/09/0515, VEGA 1/4586/07 and VEGA 1/0370/08. Specifically, 
in articles concerning the comparison of income differentiation of inhabitants in Czech Republic 
and Slovakia (Bartošová, Stankovičová, 2009), the determination of subjective poverty measure in 
Czech Republic and Slovakia (Stankovičová, 2009, Labudová and Sipková, 2008), modeling the 
influence of different factors on the risk-of-poverty rate for Czech and Slovak households (Pastorek, 
Stankovičová, 2009), measuring the risk, depth and harshness of poverty in regions of Slovakia 
(Bartošová and Forbelská, 1010, Stankovičová, 2010, Sipková and Sipko, 2010, Želinský, 2010) 
etc. 
 
 
2 Methodology 
 
2.1 The data base 
 
Information about Czech and Slovak households are acquired from the sample survey SRÚ 
(Household Budget Survey) which is organized annually by the Czech Statistic Office. The basic 
notion of this survey is so called household unit. This notion is defined as a voluntary declaration of 
the persons living in chosen flat who live and manage their household (pay for food, living, etc.). 
 
The income of household adjusted on one consuming unit (SJ) will serve as an indicator of poverty. 
The size of household (number of consuming units) is according to the definition of EU given by EJ 
= 1 + 0,3 younger children (0 – 13 years) + 0,5 other persons in household (without the head). 
 
The sample files arising from SRÚ survey cannot be considered as representative. For recalculation 
of sample data to the whole population frequency variable PKOEF is used. It is constructed using 
minimization of difference between estimated and recomputed sample characteristics. For the 
construction of model the newest available data are used, the data from SRÚ survey 2008. This data 
file contains information about incomes and expenditures of Czech households. 
 
2.2 Poverty measurements in EU 
 
The poverty is considered as serious problem not only in countries of the third world but also in 
developed states - like EU. Especially in the present time the economic development is endangered 
by crisis there arises a question of fight against the poverty. For the necessary monitoring and 
comparison of poverty in different countries the quantitative formulation of its measure is inevitable 
(see Morduch, 2005). The quantification of poverty can be approached from two different 
perspectives. The first one is consideration of minimal level of incomes the second assess the 
minimal level of expenditures to provide the basic needs of inhabitants (more details e.g. Želinský, 
2010). 
 
For comparison of the poverty in developed countries (and thus also in EU countries) the most 
commonly used indicator is the risk-of-poverty rate which is defined as a percentage of persons 
with equivalent disposable income under the poverty threshold (see Ravallion, 1998). The poverty 
threshold is determined in each country separately and is defined by OECD and EU as 60 % of 
national median equalized household income. This relative poverty measure ranks among the 
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additive Foster-Greer-Thorbecke metrics (see e.g. Želinský, 2009) and will be used in this 
contribution. 
 
2.3 Coefficient of structure dissimilarity 
  
For exploration and quantitative expression of structural changes in the consumption of households 
which occur under the poverty threshold the measures of similarity (respectively dissimilarity) of 
structures is used (see e.g. Kahounová, 1994). Two structures with relatively expressed components 
are considered as same if  

kk pp 21  , mk ,...,2,1  
 

where  p1k  is the proportion of kth component within the total of first structure, p2k  is the proportion 
of kth component within the total of second structure and m is the number of structure components. 
 
For characterization of similarity (resp. dissimilarity) of two structures ),...,,( 112111 mpppp 


 and 

),...,,( 222212 mpppp 


 different coefficients can be used. Usually, they are constructed on the basis 

of measuring the distance of two points in m-dimensional Euclidean space. For evaluation of the 
similarity it is convenient to used normalized measures with values in interval 1,0 . In this 

contribution two different measures are used – Gatev coefficient of structure dissimilarity and 
cosine coefficient of structure similarity. 
 
Gatev coefficient of dissimilarity of structures measures absolute and relative changes of structures 
in their mutual conjunction. It is an integral coefficient of structural changes given by formula 
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The values of this measure lay in the interval where the lower bound represents complete identity 
and the upper bound dissimilarity. 
 
Cosine coefficient of structure similarity uses for the measurement cosine of the angle of two 
structures 1p


 and 2p


 and is given by formula 
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in case of identity it takes the value of 1, in case of complete dissimilarity it takes value of 0. 
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3 Results 
 
3.1 Classification of households according to their financial power 
 
According to the information of EUROSTAT the population of the Czech Republic and Slovakia 
belongs to the least endangered by the monetary poverty in EU. For example in 2007 EUROSTAT 
alleged that the risk of poverty endangers some 16 % of EU population. But the Czech Republic 
was at that time evaluated as a country with the lowest risk-of-poverty rate (9.8 %) and also 
Slovakia (with 10.5 % of relatively poor) ranked among the least endangered countries of EU. 
 
But such relative measure more than the real poverty exhibits the measure of income differentiation 
and at present time – when EU countries are faced to the economic crisis – this situation can 
dramatically alter. The lowest endangering of monetary poverty indicates that incomes of the Czech 
households are still not markedly differentiated (in comparison with other countries); namely in the 
area of low incomes, i.e. in the left part of the income distribution. It means that the group of 
households with “low” financial potential (households under the poverty threshold) is in the Czech 
Republic very close to the group of households with slightly higher incomes, which can be 
considered as “medium-low”. Such households are also partially endangered by monetary poverty 
since in time of economic crisis they can easily move under the poverty threshold. Financial 
potential of other, the most numerous group of households from the centre of income distribution 
can be regarded as “medium-high” and finally, the financial potential of households from the right-
hand side of the income distribution can be considered as “high”. 
 
As far as we know, there does not exist, a criterion for division of households into groups according 
to the financial potential. Before categorization of data into the above mentioned four groups it is 
necessary to choose suitable criterion for the division. For the definition of category boundaries 
various quantile or momentum characteristics can be used. According to the character of income 
distribution (non-uniformity of density, skewness and outliers on the right-hand side) it is advisable 
to choose robust characteristics. It can be: 
 

 basic quantile characteristics (lover quartile, median and upper quartile), 

 other well known and frequently used quantile characteristics (20 % quantile, median and 
80 % quantile). 

 poverty threshold according to the EU definition, i.e. 60 % of median (poverty threshold, 1.5 
multiple of poverty threshold and 2.5 multiple of poverty threshold) etc.  

In this contribution we will use the third possibility – categorization using the poverty threshold and 
its multiples. We consider this choice as the best since it stems from the definition of quantity which 
is in EU recognize as a criterion for the determination of monetary poverty and which in some sense 
detects the “insufficiency” of financial power of individual. The corresponding boundaries are 
shown in Table 1.  

 
Table 1 contains also information concerning the count of households in each above defined 
category of financial power and their percentage in the sample of all households. The values stem 
from data file of Household Budget Survey (SRÚ) in 2008 thus it may differ from officially 
reported from sample survey EU – SILC. 
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Table 1. Division of the Czech households according to their financial power (SRÚ 2008).   
 

Financial 
Power 

Lower 
boundary 

Upper 
boundary 

Number of 
households 

Percentage

1 Low 
minimum 

minx  
poverty threshold 

x~6.0  202 6.88% 

2 Medium-low 
poverty threshold 

x~6.0  
1.5 poverty threshold 

x~9.0  756 25.77% 

3 Medium-high 
1.5 poverty threshold 

x~9.0  
2.5 poverty threshold 

x~5.1  1446 49.28% 

4 High 
2.5 poverty threshold 

x~5.1  

maximum 

maxx  530 18.06% 

Total  2934 100% 
 
It can be seen that under the official poverty threshold (in the area of low financial power) lay only 
202 (i.e. 6.88 %) from total 2934 surveyed households. But other 756 (nearly a quarter of surveyed 
households) have after recalculation on consuming unit their incomes under median; they do not 
exceed 90 % of median (medium-low financial power). The most abundant category (nearly one 
half of surveyed households) is formed by households with medium-high financial power 
(equalized incomes under 1.5 multiple of median. Even the last category of households with 
relatively high financial power on consuming unit is not small – it consist of nearly one fifth 
(18.06%) of surveyed households. 
 
3.2 Differentiation in the Czech household’s total expenditures  
 
Now we will explore how the financial potential affects the structure of household expenditures. 
The differences in consumption behavior should theoretically grow simultaneously with the growth 
of the difference in financial potential of households. Especially in the expenditure structure of the 
poorest and wealthiest households significant differences can be expected. 
 

Table 2. Chosen characteristics of net monthly incomes of the Czech households 
Recomputed on the consumption unit (SRÚ 2008). 

Financial power 
Type of 

characteristic 
low 

medium 
low 

medium 
high 

high low 
medium 

low 
medium 

high high 

Net monthly incomes (CZK per consuming unit) Monthly expenditures / Monthly incomes 
Minimum 2698 8839 13260 22100 38.93% 32.86% 32.15% 8.90%

Median 8395 17480 28180 42050 97.48% 91.10% 82.49% 71.09%

Mean 9705 17930 28710 46730 107.50% 91.70% 84.42% 72.73%

Maximum 26560 40630 55670 310600 162.30% 232.90% 209.10% 160.70%

 
Table 2 contains chosen characteristics of location of net monthly incomes of households 
recalculated on consuming unit in particular income categories. On the left hand side the net 
incomes in CZK are shown; on the right hand side percentage shares of monthly expenditures from 
the total net monthly incomes are computed. It can be seen that the proportions significantly differ 
(from 8.9% to 232.9%). It is also obvious that with the growth of their financial power this 
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proportion decreases. For instance, median of proportion of finance used for consumption decreases 
from 97.5 % (in category low) to 71 % (in category high). In case of mean this decrease is even 
more striking – from 107.5 % to 72.7 %. And let us mention the fact that maximal proportions of 
expenditures among net incomes in all categories considerably exceed 100 %. It can be caused by 
nonrecurring expenditures of households. 
  
For testing of differences in expenditures relative to the net incomes in particular categories Kruskal 
– Wallis rank sum test was used. First of all the difference in relative expenditures between at least 
one pair of categories was tested on 5 % significance level. And then we performed individual 
paired comparisons using Bonferoni correction. Tests showed that among all above defined 
categories there exist a significant difference in proportion of net incomes given monthly on 
consumption. 
 
3.3 Differentiation in structure of the Czech household’s expenditures 
 
Tables 3 and 4 contain information concerning the frequencies of particular types of expenditures 
on consumption relatively to total household incomes. 

 
Table 3. Chosen characteristics of monthly expenditures of the Czech households 

recomputed on the consumption unit (SRÚ 2008) for decreasing proportion of expenditures. 

 
The Czech Statistical Office uses for classification of consumption expenditures international 
classification COICOP (Classification of individual consumption by purpose) according which the 
total consumption is divided into 12 groups: 
 

 Food and beverages 
 Housing and energies 

Financial power 
Type of 

characteristic 
low 

medium 
low 

medium 
high 

High low 
medium 

low 
medium 

high high 

Food and beverages (CZK per consuming unit) Food and beverages  / Total expenditures 
Minimum 731 688 564 934 9.34% 5.81% 3.09% 3.27%
Median 2285 3727 4582 4830 26.54% 24.12% 19.71% 15.79%
Mean 2707 3965 4694 5043 27.34% 24.88% 20.18% 16.40%
Maximum 8090 11280 13440 16910 59.48% 57.87% 56.67% 37.01%

Housing and energies (CZK per consuming unit) Housing and energies / Total expenditures 
Minimum 0 0 0 0 0% 0% 0% 0%
Median 2810 3610 4273 4720 31.21% 23.85% 19.08% 16.15%
Mean 2898 3822 4548 5189 31.34% 25.40% 20.16% 17.27%
Maximum 7894 18970 24140 26500 66.95% 63.79% 55.08% 54.37%

Health (CZK per consuming unit) Health / Total expenditures 
Minimum 0 0 0 0 0% 0% 0% 0%
Median 195 384 444 564 2.07% 2.56% 1.95% 1.93%
Mean 289 503 589 762 3.12% 3.38% 2.52% 2.41%
Maximum 1736 5698 12630 10000 21.98% 45.99% 42.43% 20.95%

Communication (CZK per consuming unit) Communication / Total expenditures 
Minimum 0 0 0 0 0% 0% 0% 0%
Median 431 692 1042 1210 4.55% 4.59% 4.43% 4.10%
Mean 549 836 1145 1362 5.25% 5.04% 4.88% 4.42%
Maximum 2395 4116 6145 5889 15.54% 20.91% 25.99% 22.80%
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 Health 
 Communication 
 Household equipment 
 Recreation and culture 
 Transport 
 Alcohol and tobacco 
 Clothing and footwear 
 Education 
 Restaurants and hotels 
 Others 

 
On the left hand side of tables 3 and 4 monthly expenditures per consuming unit can be seen; on the 
right hand side there appears shares of particular type of expenditures among the total expenditures 
of household. In table 3 there are collected types of expenditures where the share on total 
expenditures decreases. On the other hand table 4 contains expenditures for which the share on total 
expenditures increases. First group can be regarded as inferior goods whereas the second group of 
goods preferred by high-income households. 
 
Similarly like in the case of total expenditures also in this case we can observe significant 
differences among relative expenditures of households with various financial powers. For testing of 
differences in relative representation of particular categories it is again shown that there exist 
significant differences among all categories. 
 
Table 4. Chosen characteristics of monthly expenditures of the Czech households 

recomputed on the consumption unit (SRÚ 2008) for increasing proportion of expenditures. 
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3.3 Structure similarity in case of the Czech household’s expenditures 
 
Thus it was shown the proportion of particular expenditure types differs in different income 
categories. But it does not necessarily mean that the structure of expenditures in these categories 
differs. For measuring of (dis)similarity of structures we use the following two coefficients. 
 

Financial power 
Type of 

characteristics 
low 

medium 
low 

medium 
high

High low 
medium 

low 
medium 

high high 

Household equipment  (CZK per consuming unit) Household equipment / Total expenditures 
Minimum 0 17 0 62 0% 0.23% 0% 0.26%
Median 266 630 1122 1658 2.96% 4.15% 5.07% 5.59%
Mean 448 967 1647 2486 3.97% 5.43% 6.62% 7.54%
Maximum 4226 12710 23320 19720 31.35% 41.56% 47.10% 49.82%

Recreation and culture (CZK per consuming unit) Recreation and culture / Total expenditures 
Minimum 0 15 86 262 0% 0.23% 0.56% 1.30%
Median 582 1162 2101 3072 6.44% 8.03% 9.49% 10.38%
Mean 803 1528 2606 3742 7.58% 8.90% 10.58% 11.59%
Maximum 8006 9384 13400 16510 27.54% 33.54% 49.44% 40.38%

Transport (CZK per consuming unit) Transport / Total expenditures 
Minimum 0 0 0 5 0% 0% 0% 0.05%
Median 203 760 1744 2646 2.33% 5.04% 7.83% 9.30%
Mean 465 1256 2707 5023 3.88% 6.31% 9.64% 13.38%
Maximum 3834 21850 57240 47360 18.64% 47.95% 64.45% 72.48%

Alcohol and tobacco (CZK per consuming unit) Alcohol and tobacco / Total expenditures 
Minimum 0 0 0 0 0% 0% 0% 0%
Median 110 258 396 465 0,0120% 0,0168% 0,0175% 0,0152%
Mean 311 488 688 766 0,0289% 0,0302% 0,0305% 0,0257%
Maximum 4465 4617 6015 5115 0,0289% 0,0302% 0,0305% 0,0257%

Clothing and footwear (CZK per consuming unit) Clothing and footwear / Total expenditures 
Minimum 0 0 0 32 0% 0% 0% 0,0017%
Median 263 561 1127 1636 0,0280% 0,0370% 0,0492% 0,0544%
Mean 383 746 1319 1897 0,0348% 0,0422% 0,0532% 0,0594%
Maximum 2752 6268 6613 10330 0,1736% 0,1685% 0,1948% 0,2161%

Education (CZK per consuming unit) Education / Total expenditures 
Minimum 0 0 0 0 0% 0% 0% 0%
Median 0 0 0 0 0% 0% 0% 0%
Mean 39 94 166 231 0,0029% 0,0041% 0,0059% 0,0059%
Maximum 1885 2967 5385 10000 0,1130% 0,1539% 0,1859% 0,1936%

Restaurants and hotels (CZK per consuming unit) Restaurants and hotels / Total expenditures 
Minimum 0 0 0 0 0% 0% 0% 0%
Median 186 470 1021 1491 1.94% 3.17% 4.63% 4.90%
Mean 435 782 1353 1787 4.10% 4.31% 5.38% 5.56%
Maximum 4432 8483 11587 7885 53.84% 35.13% 29.66% 30.91%

Others (CZK per consuming unit) Others / Total expenditures 
Minimum 34 12 120 262 0.60% 0.13% 0.91% 1.20%
Median 484 1180 2372 3486 5.86% 7.64% 10.49% 11.73%
Mean 752 1512 2655 3876 6.75% 8.70% 11.07% 12.34%
Maximum 4230 7488 12240 12990 22.62% 34.51% 46.96% 36.39%
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Table 5. Gatev coefficient of structure dissimilarity in case of expenditures 
relative to the total expenditures (SRÚ 2008). 

Financial power low medium low medium high high 
low 0    

medium low 0.1260044 0   

medium high 0.2784147 0.1605326 0  

high 0.3908020 0.2816644 0.1288356 0 

 
Table 6. Cosine coefficient of structure similarity in case of expenditures 

relative to the total expenditures (SRÚ 2008). 

Financial power low medium low medium high high 
low 1    

medium low 0.9895620 1   

medium high 0.9422485 0.979256 1  

high 0.8727787 0.9296593 0.9841162 1 

 
The results of structure (dis)similarity investigation are shown in tables 5 and 6. According to the 
assumptions both coefficients confirmed the highest differences between both “extreme“ categories 
(low and high).   
 
 
4 Conclusions 
 
The proposed contribution is focused on the determination of differences of expenditures in case of 
households with different levels of financial power. First of all households were divided into four 
categories according to their financial power (low, medium-low, medium-high and high). The 
breaks between particular categories were derived from officially provided poverty threshold.  
 
From the analysis of total expenditures of the Czech households in 2007 (SRÚ 2008), it seems that 
the differentiation of household incomes given their consumption is very high. It appears that 
maximal values of this ratio several fold surpass 100 %. Simultaneously it is shown that this 
proportion with growing financial power decreases and the differences between particular income 
groups are statistically significant. 
 
In the following part the expenditure structure was investigated and its dependence on financial 
power. For this task the categorization into 12 groups according to COICOOP methodology was 
used. It appears that relative shares of expenditure types differ significantly according to the 
category of financial power. According to this behaviour the expenditures were divided into two 
groups. Among the expenditures more preferred by low-income households were the expenditures 
on food and beverages, housing and energies, health and communication. Their proportion was 
highest in the case of poorest households. The share of other expenditure groups, i.e. expenditures 
on household equipment, recreation and culture, transport, alcohol and tobacco, clothing and 
footwear, education, restaurants and hotels and others was greatest in case of the wealthiest 
households. But the question whether the total structure of incomes in these groups differs 
significantly must be answered negatively. Values of the both similarity coefficients shows 
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relatively high similarity of expenditure structure in all categories. But in spite of this fact, some 
dissimilarity was confirmed in case of the two “extreme” categories (low and high financial power). 
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DIFFERENTIATION   AND   DYNAMICS   OF  HOUSEHOLD   INCOMES 

IN  THE  CZECH   EU-SILC   SURVEY  IN  THE   YEARS   2005 - 2008 
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Abstract. Finite mixtures of regression models are frequently used to model unobserved 
heterogeneity. Mixed models are widely applied to longitudinal data, modelling multiple 
observations from a single subject collected over time. We apply multivariate mixture model to 
the Czech longitudinal survey of household income in the European Union Statistics on Income 
and Living Conditions in 2005 – 2008. By means of the Finite mixtures of regression models, 
households are categorized according to four classes of income dynamics. 
 
Keywords. Equivalised household income, finite mixture model, clustering, linear mixed 
models, poverty rate. 
 
Mathematics Subject Classification:  Primary 62H30, Secondary 30C40. 

 
 
1 Introduction 
 
Income and its progression over the years, is of interest in all countries. Studying how the average 
income evolves over time is not sufficient, because it does not inform about the extremes, and may 
hide growing poverty and differentiation. Studying the distribution of income in a sequence of years 
separately does not suffice either, because such an analysis does not inform about the stability of 
income, about the extent to which the income of some households grows faster (or changes 
differently) than the income of others. 
 
Finite mixture models are often used to study data from a population that is suspected to be 
composed of a number of homogeneous subpopulations. Mixture-model-based clustering has 
become a popular approach for its statistical properties and the implementation simplicity of the EM 
algorithm. Therefore, we focused on the partitions of equivalised household income into 
homogeneous subpopulations using the mclust library of R (see [3], [6]). Subsequently, regression 
analysis is performed using linear mixed models. 
 



 
 
 

Aplimat – Journal of Applied Mathematics

 

   volume 4 (2011), number3
 
 

200

The article deals with cluster analysis of household income dynamics based on the results of 
statistical survey EU SILC between 2005 and 2008. We apply finite mixture models to compute the 
number of components of distribution of equalised income in Czech households and to characterize 
income stability and nobility in the Czech Republic between 2003 and 2007.  We also study 
modeling of income dynamics in the respective components of the mixture. The article builds on 
works by Paap and van Dijk (1998), Pittau (2005) a Pittau and Zelli (2006). 
 
1.1 EU-SILC survey during 2005 – 2008 years 

 
The European Union Statistics on Income and Living Conditions (EU-SILC) is an instrument 
aiming at collecting timely and comparable cross-sectional and longitudinal multidimensional 
microdata on income, poverty, social exclusion and living conditions. EU-SILC is the main source 
for the compilation of comparable indicators on social cohesion used for policy monitoring at EU 
level in the framework of the Open Method of Coordination. This instrument is anchored in the 
European Statistical System (ESS). 
 
The EU-SILC was launched under a gentleman's agreement with six EU-15 countries plus Norway 
in 2003 and re-launched under a Regulation with twelve EU-15 countries (Belgium, Denmark, 
Greece, Spain, France, Ireland, Italy, Luxembourg, Austria, Portugal, Finland and Sweden) and in 
Estonia, Norway and Iceland in 2004. In 2005 the rest of the EU-25 countries (Czech Republic, 
Slovakia etc.) joined the EU-SILC. Bulgaria, Romania, Turkey and Switzerland have launched 
SILC in 2006. 
 
Sample survey of household income in the Czech Republic is made by the Czech Statistical Office 
(CSO). From the fifties of the last century there was an irregular survey, which took place at 
intervals of 2 to 5 years under the name Microcensus. After the entrance to the European Union, 
Microcensus was replaced by annual survey of income and living conditions of households EU-
SILC. The European Union Statistics on Income and Living Conditions (EU-SILC) is an instrument 
aiming at collecting timely and comparable cross-sectional and longitudinal multidimensional 
microdata on income, poverty, social exclusion and living conditions. This instrument is anchored 
in the European Statistical System (ESS). 
 
1.2 Equivalised household income 
 
The equivalised household income is used to allow comparisons between households of different 
sizes and composition. The equivalised household income is obtained by dividing the available 
household income by the number of consumption equivalents in the household. It is assumed that, 
as the size of the household increases and depending on the age of the children, cost savings are 
achieved in the household through joint budgeting (economies of scale). For weighting purposes, 
the EU scale (modified OECD scale) is used to calculate a household’s resource requirements. An 
adult living on his or her own is taken as the reference point (consumption equivalent), with an 
allocated weighting of 1. For each additional adult, the assumed resource requirement increases by 
0.5 consumption equivalents. Each child under the age of 14 is weighted with a consumption 
equivalent of 0.3. So a household comprising a father, mother and child would have a calculated 
consumption equivalent of 1.8 compared with a single-person household. 
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1.3 Poverty rate 
 
The poverty rates discussed here are defined as the percentage of those having less than 60% of the 
median income. It means, the poverty rates is percentage of persons in the total population with an 
equivalised disposable income below the “national poverty line” (i.e. below 60% of the national 
median equivalised disposable income). Total population is all persons living in private household 
on the national territory. Total disposable income of a household is calculated by adding together 
the personal income received by all of the household members, plus income received at household 
level. Disposable household income includes all income from work, private income from 
investment en property, transfers between households and all social transfers received in cash 
including old-age pensions (see remarks for more detailed definition). 
 

Table 1: Annual national poverty levels 
Year 2005 2006 2007 2008
Poverty threshold 80986 85714 92212 101016

Risk of poverty rate 
Longitudinal data (income per households) 9,38% 9,31% 8,88% 9,27%
All data (income per households) 10,31% 9,80% 10,25% 10,63%
 Longitudinal data (income per individuals) 9,10% 9,6% 9,8% 10,4%

 
 
2 Model Specification 
 
The estimation of income distributions is important for assessing income inequality and poverty and 
for making comparisons of inequality and poverty over time. Distributions have been estimated 
both parametrically and non-parametrically. 
 
The normal distribution, with a particular symmetric shape of its density, is the mainstay of 
statistical modelling. Possibly after some adjustment for covariates, normality is an appropriate 
assumption for modelling many phenomena. In a variety of settings, income has a skewed 
distribution; income cannot be negative, a small fraction of the units has very small (or zero) 
income, a large fraction has income in a relatively narrow range, and a few units have high income 
spread across a wide range. Lognormal distribution is better suited for modelling income (in the 
particular setting) than normal distribution, but further improvement on the fit would be highly 
desirable. We seek improvement by mixture modelling. A sample (or a population) of units is said 
to be a mixture if it comprises several subsamples (groups), each with a distinct distribution of the 
studied variable. 
 
2.1 The Explanatory Mixture Model 
 
Next we assume that the equivalised household incomes can be broken down into K homogeneous 
subpopulations (strata) with proportions π1,…,πK and that each household income Y follows normal 
distribution. We let yi denote the value of Y corresponding to the ith entity (i = 1,…, N). With the 
mixture approach to clustering, y1,…,yn are assumed to be an observed random sample from mixture 
of a finite number of groups in some unknown proportions π1,…,πK. The mixture density of yi is 
expressed as 
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specified up to a vector jθ of unknown parameters (j= 1,…,K). The vector of all the unknown 

parameters is given by ),,,,,( 111 KK θθΨ    . Using an estimate of Ψ , this approach gives  
a probabilistic clustering of the data into k clusters in terms of estimates of the posterior 
probabilities of component membership, 
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where )( ij y  is the posterior probability that iy  (really the entity with observation iy ) belongs  
to the j-th component of the mixture (i= 1,…,n, j= 1,…,K). In the Bayesian framework, we use the 
rule which assigns observation xi to the class for which yi has the highest posterior probability. The 
parameter vector Ψ  can be estimated by maximum likelihood (MLE) and can be obtained via the 
expectation-maximization (EM) algorithm of Dempster et al. (1977, see [2]). In practice, the 
number of components K is unknown and can be chosen as that which minimizes some criterion, 
e.g. Bayesian Information Criterion BIC of Schwarz (1978, see [7]), see also McLachlan and Peel  
(2000, see [5]).  
We use the mclust package (Fraley and Raftery, 2006) of the R environment for fitting mixtures 
model. Figure 1 and Table 2 show the resulting optimal component partitions given by EM 
algorithm with BIC criterion. The Figure 1 also shows that the first component from 2006 to 2008 
in 2005 split into two sub-components, so the next will be considered merged. 
 

Table 2: Estimated parameters for the optimal component mixtures  
of equivalised income over years 2005 – 2008 

Year Comp. 

Estimated parameters 
of mixtures 

Estimated parameters 
of classified households 

prop   mean sigma var. coeff. prop mean sigma var. coeff. 

2005 1 0.218  90187  28096 31.15% 0.192  73728   17434 23.65%
2005 2 0.248 114211  19431 17.01% 0.342 114283   11115 9.73%

2005 3 0.384 161557  42841 26.52% 0.378 175815   29871 16.99%

2005 4 0.141 246162  97621 39.66% 0.080 316674   64074 20.23%

2005 5 0.010 707948 498193 70.37% 0.007 849986 489290 57.56%

2006 1 0.376 110919  25935 23.38% 0.480 105383   19910 18.89%

2006 2 0.502 158402  51381 32.44% 0.447 176518   43518 24.65%

2006 3 0.113 269374 107049 39.74% 0.067 345870   74185 21.45%

2006 4 0.009 760232 535303 70.41% 0.006 941468 538509 57.20%

2007 1 0.288 119070  23967 20.13% 0.375 113295   15504 13.68%

2007 2 0.481 155809  50168 32.20% 0.481 164823   46265 28.07%

2007 3 0.215 242493  94951 39.16% 0.133 308895   63590 20.59%

2007 4 0.016 613300 409740 66.81% 0.011 771951 407788 52.83%

2008 1 0.267 126521  25554 20.20% 0.355 118488   16858 14.23%

2008 2 0.438 165796  48445 29.22% 0.458 175165   39299 22.44%

2008 3 0.277 237614  96542 40.63% 0.175 295190   84013 28.46%

2008 4 0.018 630300 380840 60.42% 0.012 792083 356501 45.01%
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Estimated parameters of mixtures and classified households show that the first three components 
contain almost all equivalised income. Their variance is about half as low as the variance of the 
fourth component that models extremes of income distribution. As a consequence, it shows high 
variance and significant shift of values to the right. The fourth component only comprises between 
0,6 and 1,8 % of Czech households. If mostly comprises households with high and extreme income. 
The average of income is thus about three times as high as in the third component. 
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Figure 1: BIC-optimal component mixtures of equivalised income in the years 2007 – 2008.  

(Bold solid line indicates the level of poverty (see Table 1), dashed lines indicate the positions of 
the mean values of individual components). Data source SILC 2005 – 2008. 

 
It shows that Bayesian Information Criterion BIC divides households into four income categories 
using the EM algorithm. The categories are: Households with low income, average income, higher 
income and a small category of households with high income. This corresponds to the real image of 
partition of the population into the low-income class that is at risk of poverty, lower-middle class 
that may drop under the poverty line as a consequence of the crisis and lastly the middle class that 
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may remain relatively stable or even move up to the high-income-class. Risk-of-poverty-rate in 
individual components can be found in Table 3. 
 
The situation is also pictured in Figure 1, where aside from the income distribution and its 
components, we also exhibit the poverty line. We can see that the income distribution in 2005 is 
steeper from the left than in upcoming years. This indicates a shallow depth of poverty and also 
explains why only households from the first component (17.55%) fell below the poverty line in 
2005. From Figure 1 we can see how poverty in the Czech republic gradually raises, i.e., how an 
increasing proportion of households at risk of monetary poverty drift away from poverty to the left 
– in direction of lower values. At the same time, we can observe partial selection within the same 
component, which is a prerequisite for creating convergence classes. For example, Table 2 shows 
that in the first two components, the ratio of estimated parameters sigma and mean (variation 
coefficient of estimate) decreased in 2008 compared to 2006 (in the first component by 3.38 
percentage points in the second by 3.22 pp)., while the third component increased by. 1.11 pp Also, 
the relative variability in household income included in the first and second components between 
years 2006 and 2008 decreased (in the first component from 18.89% to 14.23% and in the second 
from 24.65% to 22.44%). In contrast, the relative variability of income of households belonging to 
the third component increased from 21.45% to 28.46%. However, the biggest drop in variability 
appeared in the fourth component, where variation coefficient of parameter estimates for the period 
2006 – 2008 decreased from 70.37% to 60.42%, i.e. nearly 10 pp and relative variability of income 
in this component decreased from 57.56% to 45.01%, i.e. by 11.55 pp. 
 

Table 3: Percentage of Czech households at risk of monetary poverty in respective components. 
Data source EU SILC 2005 – 2008. 

Component Year Poverty No Poverty Yes 

1 
 

2005 82,45% 17,55% 
2006 83,73% 16,27% 
2007 89,82% 10,18% 
2008 84,01% 15,99% 

2 
 

2005 100 0 
2006 96,21 3,79 
2007 89,51 10,49 
2008 94,07 5,93 

3 
 

2005 100 0 
2006 100 0 
2007 100 0 
2008 94,83 5,17 

4 
 

2005 100 0 
2006 100 0 
2007 100 0 
2008 100 0 

 
The percentage of the components in the category of Czech households living below the poverty 
line between 2005, and 2008, is given in Table 4. The table demonstrates in another way the fact 
that in 2005, all poor households are located in the first component. The above described 
developments of income in the Czech Republic resulted in the years 2006 – 2008 in occurrence of 
poverty in other (middle-income) components. 
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Table 4: Percentages of the components below poverty line in the Czech Republic. 
Data source EU SILC 2005 – 2008. 

Year 2005 2006 2007 2008 
Poverty No Yes No Yes No Yes No Yes 
Comp.1 48,65 100 42,96 81,27 36,77 42,76 32,55 60,68

Comp.2 42,29 0 48,81 18,73 47,59 57,24 47,45 29,29

Comp.3 8,12 0 7,76 0 14,5 0 18,79 10,04

Comp.4 0,95 0 0,47 0 1,13 0 1,2 0
 
 
2.2 Model Specification over Short Time Periods 
 
Let  

TtijtY
,,1

be a panel of multiple time series observed for N units (t=1,…,T,j=1,…,,K,i=1,…,nj, 

Nnn K 1 ). Denote also by )',,( 1 ijTijij YYY   (ij)-th univariate time series with the joint 

density );( ijyf θ , where ijθ  is unknown parameters that need to be estimated from the data. If T 

were large, the parameters ijθ  could be estimated for each time series )',,( 1 ijTijij YYY   

individually. However, if T is relatively small one might use information from the other time series 
in the panel to estimate unknown parameters. 
 
2.2.1 Simple Linear Mixed Model (LMM) 
 
For our longitudinal data we assume very simple linear mixed model described by the structure 

 ijijij tY   *),1(   (2.3) 

where )',()',( ***
ijjijjijijij vbuaba  , 1 is vector of ones, )',,1( Tt  , j=1,…,K, 

jni ,,1 ,. Nnn K 1 . In this model we call )',( jjj ba the fixed effects (fixed intercept 

and fixed slope) and )',( ijijij vuz   the random effects (random intercept and random slope). We 

assume that random vectors ijz  and ij  are independent and identically distributed. Parameters of 

the mixed model can be estimated using Maximum Likelihood Estimation (MLE) or Restricted 
Maximum Likelihood Estimation (RMLE), while the Akaike Information Criteria (AIC) and the 
Bayesian Information Criteria (BIC) can be used as measures of “goodness of fit” for particular 
models, where smaller values for both are considered more preferable. We use the lme4 package 
(Bates and Maechler, 2010) of the R environment for fitting and examining linear mixed-effects 
models. 
 

Table 5: Estimated parameters of the LMM model of equivalised income over years 2005 – 2008 
Parameter Component 1 Component 2 Component 3 Component 4 

a (intercept) 119601.752 172356.282 281959.48 682573.97 

b (year) 7683.591  1737.615 -10716.08 -53996.76 

 
 
REML-estimates of random parameters related to their variability and correlation are summarized 
in Table 6. 
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Table 6: REML-estimates of variation characteristics of random effects. 
(Data-resource EU SILC, own calculations) 

 

Parameters of random effects 
σ1 = 1548.6 σ2 = 606.2 ρ = 0.601 

Parameter of variability of error component 
σe = 34330.9 

 

 

Figure 2: Resulting LMM model of equivalised income over years 2007 – 2008 
for BIC-optimal components (solid line is a straight line with fixed parameters and describes the 

components of the average trajectory, the dashed line is the ordinary OLS regression line). 
Data source SILC 2005 – 2008. 

 
Figure 2 pictures all trajectories of equivalent household income throughout the researched period 
of four years-separately for each component. In addition, there are also the regression lines with 
fixed coefficients, ja , and jb , i.e. lines that characterize the average behaviour of each component. 

Another line of interest, the regression line estimated from all observations of a given component 
using the classical method of least squares (OLS Fitted curve), is plotted in the graph. 
 
The choosen method models dynamics of components in each year separately; hence equivalent 
income of some households is not included in the same component for the whole four years. The 
households are devided into components regardless which component they belonged to in the 
previous or following year. Therefore the trajectory of their four-year-development can be 
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disconnected (see Figure 2). This inaccuracy can be rectified by applying Regression Mixtures, 
where we partition the trajectories of equivalent income of households into components in an 
iterative way, so we avoid development discontinuity. 
 
For every (ij)-th household inside of the j-th component, the LMM model predicts its own values of 
parameters of lines ijjij uaa * , and ijjij bb * . Their values are plotted in the graph (see Figure 

2) and around every pair of parameters for each component, there is an ellipse of concentration 
together with the position of fixed parameters ),( jj ba  (coloured full squares) and sampling means 

of parameters of each component ),( jj yx  (red point). The images show how coefficients of the 

LMM model estimated by two-step-method form disjoint clusters. 
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Figure 3: The position of parameters ),( **

ijjijijjij bbuaa   expressed by the number of 

components for (ij)-th household. Full squares: values of fixed parameters ),( jj ba , black circles: 

sample mean coefficients of components (data - the source of EU-SILC, the calculation). 
 
 

4 Conclusions 
 
Present paper demonstrates that using Finite Mixture Models and Linear Mixture Models, we can 
devide households into several classes that correspond to natural partition of the population into 
low-income class, lower middle class, higher middle class and high-income class. Further, we can 
analyse in detail the structure of individual components of the mixture from both social and 
demographic point of view. The position, variability and shape of income distribution in the 
components can assess stability, mobility and differentiation, respectively polarization of income, 
identify mutual connections and make predictions. Linear Mixture Models allow us sensitively 
model dynamics of income development in individual components and observe the trajectories of 
individual development of financial power of households. 
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Finite mixtures are thus a very suitable stochastic tool to make so-called classification without a 
teacher, that we sometimes also call stochastic cluster analysis. Or, if we want to be more specific, 
we call mixture-model-based clustering. 
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FORECASTING VOLATILITY WITH WAVELETS:
METHODOLOGY

BAŠTA Milan, (CZ)

Abstract. The dynamics of volatility of financial markets shows different behavior at
different time scales. We propose to use the Haar Maximal Overlap Discrete Wavelet
Transform (MODWT) to forecast volatility. We also propose to analyze the logarithm of
volatility to avoid positivity constraints and to use the logarithm of the Garman-Klass
estimator to proxy log volatility. Interscale dynamics is shortly studied and discussed.
Ideas for further research are outlined.
Key words and phrases. Time series, wavelets, volatility, forecasting, heterogeneous
agents
Mathematics Subject Classification. Primary 62M20; Secondary 42C40, 91B28, 91B69.

1 Introduction and motivation

It may be assumed that financial markets consist of several groups of heterogeneous agents.
For example, the US stock market consists of market makers, intraday traders, arbitrageurs,
traders within a few days, hedge funds, portfolio managers, “buy and hold” traders, investment
funds, investment banks etc. Each group of traders uses different tools to analyze the market,
has an access to a different sort of information, has a different level of risk aversion, different
institutional and personal trading constraints, strategies and preferences. These differences
among groups lead to different time scales each group operates on (see e.g. [16]). For example
market makers operate on the shortest investment horizons of several seconds, whereas “buy
and hold” traders may hold their financial assets for several days. Such a heterogeneity of the
market implies a different reaction to the same news. For example, a high-frequency trader
using the technical analysis to buy and sell will promptly react to changing patterns in the chart
of the price but will be immune to the fundamentals of the company, the shares of which he
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owns. On the other hand, a “buy and hold” trader might be concerned with these fundamentals
and be completely inattentive to the indicators of the technical analysis.

The reaction to news and information is closely related to the volatility of the market.
Thus, if the reaction to information differs across the groups of traders, then it might be
possible that the dynamics of volatility is different across different time scales. There have
been several studies of stock as well as FX markets that support the above outlined hypothesis.
For example, the results of [1] and [23] suggest the existence of the causal information cascade
in volatility. More specifically, shocks in volatility at larger scales propagate further to shorter
scales. On the other hand, shocks on shorter scales do not influence the larger scales much.
Such a result was also confirmed by [12]. Various models have emerged to explain this kind of
dynamics, see e.g. [12] or [15] for some of these. In this paper we argue that wavelets are an
intriguing tool suitable for studying volatility of heterogeneous markets.

2 Volatility, its traditional models and proxies

Let closet be the time series of the closing stock price. The time series of returns is defined as

Rt ≡ closet

closet−1

− 1. (1)

In many practical situations it might be more convenient to work with logarithmic returns
(hereafter log returns) defined as

rt ≡ ln(Rt + 1). (2)

Let ht be the conditional variance, hereafter called volatility, of log returns defined as1

ht ≡ Et−1

{
r2
t

}
, (3)

where Et−1 {.} is the expectation operator given the set of information available at time t − 1.

2.1 Traditional models of volatility

A well-known way of modeling time-varying volatility of financial markets are ARCH(q) models
by [7]

ht = ω +

q∑
i=1

αir
2
t−i, (4)

where ω and αi are parameters, which are constrained to ω > 0 and αi ≥ 0 to ensure that
volatility is positive. Bollerslev [4] proposed the GARCH(p,q) models of volatility

ht = ω +

q∑
i=1

αir
2
t−i +

p∑
i=1

βiht−i, (5)

1For financial markets it is usually assumed that Et−1 {rt} = 0.
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where ω > 0, αi ≥ 0 and βi ≥ 0 are parameters. The empirical analysis of the time series
r2
t (e.g. [11]), |rt| (e.g. [10]) or log r2

t (e.g. [5]) suggests that the processes of volatility have
long-memory, which cannot be captured by traditional ARCH(q) or GARCH(p,q) of Eq. 4 and
5. To capture long-memory e.g. the FIGARCH model by [2] may be used.

2.2 Proxies to volatility

It might be difficult to assess the predictive power of the forecasts, because volatility is a latent
variable and thus is not directly observable. If high-frequency data are not available a common
proxy to daily volatility are the squared log returns. To illustrate, let us assume

rt =
√

htut, (6)

where ut ∼ N(0, 1) are i.i.d. random variables with zero mean, unit variance and Gaussian
cumulative distribution function. Then

r2
t = htu

2
t , (7)

E[r2
t ] = ht. (8)

Thus squared log returns are an unbiased estimator of volatility. However, at the same time
this estimator is very noisy (see e.g. [20]).

For these reasons it might be more desirable to obtain less noisy estimates of volatility. If
high frequency data are not available but if we have information on the high, low, closing and
opening price for each day we can use the Garman-Klass estimator of the intraday volatility
(i.e. the volatility from open to close), which is defined as (see [8])

Kt ≡ 0.511(mt − lt)
2 − 0.019 [ct(mt + lt) − 2mtlt] − 0.383c2

t , (9)

where

mt ≡ ln(maxt) − ln(opent), lt ≡ ln(mint) − ln(opent), ct ≡ ln(closet) − ln(opent), (10)

where maxt, mint, closet and opent is the high, low, closing and opening price of day t.

3 MODWT

As argued in the section 1 volatility exhibits scale-dependent dynamics. It might be thus
interesting to study whether wavelets, which are a suitable tool for analyzing dynamics on
different time scales, might be used for the forecast of volatility. In this section the Maximum
Overlap Discrete Wavelet Transform (MODWT) will be summarized, which will be used for
the decomposition of the volatility with respect to the time scale and its multiscale forecast
afterward. Our short introduction to MODWT (i.e. section MODWT) is based on the book
[19], which encompasses further details and proofs of the statements given below.
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3.1 MODWT filters

A linear filter at is a sequence of weights, i.e.

at ≡ {. . . a−2, a−1, a0, a1, a2 . . .} . (11)

The linear filtration of a time series xt (or a stochastic process {xt}) is defined as

at ∗ xt ≡
∑
m

amxt−m, (12)

where ∗ stands for the operation of convolution. An important characteristics of the linear
filter is its frequency response defined as the Fourier transform of at, i.e.

A(f) ≡
∑

t

at exp(−i2πft), −∞ < f < ∞, (13)

where f is the frequency.
The MODWT may be thought of as the linear filtration of the time series or the stochastic

process with a special set of linear filters. This special set of linear filters may be created if
two elementary filters are given2 – the wavelet filter h̃1,t and the scaling filter g̃1,t. It holds that
h̃1,t ≡ 0 for t < 0 and for t ≥ L1. The number L1 is called the length of the filter. The filters
h̃1,t and g̃1,t are interconnected via the so called quadrature mirror relationship

g̃1,t ≡ (−1)l+1h̃1,L−1−t, (14)

and fulfill certain specific conditions, e.g.

∑
t

h̃1,t = 0,
∑

t

h̃2
1,t =

1

2
,

∑
t

h̃1,th̃1,t+2n = 0 for n �= 0, (15)

∑
t

g̃1,t = 1,
∑

t

g̃2
1,t =

1

2
,

∑
t

g̃1,tg̃1,t+2n = 0 for n �= 0 (16)

and

|H̃1(f)| ≈
{

1, 1
4

< |f | ≤ 1
2

0, otherwise
, (17)

|G̃1(f)| ≈
{

1, 0 ≤ |f | ≤ 1
4

0, otherwise
, (18)

where H̃1(f) is the frequency response of the linear filter h̃1,t and G̃1(f) is the frequency
response of the linear filter g̃1,t. Thus, the filter h̃1,t is approximately a high-pass filter that
passes frequencies in the region 1

4
< |f | ≤ 1

2
and the filter g̃1,t is approximately a low-pass filter

that passes frequencies in the region 0 < |f | ≤ 1
4
.

From the filters h̃1,t and g̃1,t two sets of filters may be created via the so called pyramid
algorithm (the algorithm not specified here):

2To keep the notation the same as in [19] tildes above the letters are given throughout the text.
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1. the set of wavelet filters: h̃1,t, h̃2,t, h̃3,t . . .

2. the set of scaling filters: g̃1,t, g̃2,t, g̃3,t . . .

Let Lj be the length of the filter h̃j,t and g̃j,t, j = 1, 2, . . .. Thus, it holds that h̃j,t = 0 for t < 0
and t ≥ Lj. Similarly, g̃j,t = 0 for t < 0 and t ≥ Lj. Let H̃j(f) be the frequency response of
the linear filter h̃j,t and G̃j(f) the frequency response of the linear filter g̃j,t. It can be shown
that it holds

|H̃j(f)| ≈
{

1, 1
2j+1 < |f | ≤ 1

2j

0, otherwise
, (19)

|G̃j(f)| ≈
{

1, 0 < |f | ≤ 1
2j+1

0, otherwise
. (20)

Thus, the filter h̃j,l is a band-pass filter for the range of frequencies 1
2j+1 < |f | ≤ 1

2j and g̃j,l is
a low-pass filter that passes frequencies in the range 0 < |f | ≤ 1

2j+1 .
One example are the Haar filters. It can be shown that for the Haar wavelet filters it holds

h̃j,t ≡
⎧⎨
⎩

1
2j , for t = 0, . . . , 2j−1 − 1
− 1

2j , for t = 2j−1, . . . , 2j − 1
0, otherwise

, (21)

and for the Haar scaling filters it holds

g̃j,t ≡
{

1
2j , for t = 0, . . . , 2j − 1
0, otherwise

. (22)

The lengths of the Haar filters h̃j,t and g̃j,t are equal to Lj = 2j.

3.2 MODWT coefficients

If we apply the wavelet filter h̃j,t onto the time series xt : t = 0, . . . , N − 1 we get the sequence

w̃j,t ≡ h̃j,t ∗ xt, (23)

called the jth level MODWT wavelet coefficients. Similarly, if we apply the scaling filter g̃j,t

onto the time series xt we get
ṽj,t ≡ g̃j,t ∗ xt, (24)

called the jth level MODWT scaling coefficients. It can be shown that the wavelet coefficients
w̃j,t are (for a wide class of filters) associated with the dynamics on the scale of 2j−1. On the
other hand, the scaling coefficients ṽj,t are associated with the dynamics on the scale of 2j.

To calculate w̃j,t (of Eq. 23) for all values of t = 0, . . . , N − 1 (so that the sequence w̃j,t has
the same length as is the length of xt) values of xt preceding the value x0 are needed (because
h̃j,t is a causal filter). If these values are not available then circularity of xt is usually assumed,
i.e. x−1 ≡ xN−1, x−2 ≡ xN−2 etc. The same chain of thoughts applies to ṽj,t.

volume 4 (2011), number 3 213



Aplimat - Journal of Applied Mathematics

4 Multiscale forecasting of volatility with Haar wavelets

In our multiscale forecasting procedure we may exploit the fact that an additive decomposition
of xt is possible via Haar MODWT coefficients, i.e. (see e.g. [19], exercise [5.10] at p. 205)

xt = ṽJ,t +
J∑

j=1

w̃j,t, (25)

where ṽj,t and w̃j,t are Haar scaling and wavelet coefficients of the time series xt and J ≥ 1 is an
integer. The decomposition of Eq. 25 holds only for Haar wavelets, which will thus be assumed
to be used further on. Coefficients unaffected by the circularity assumption may be easily used
for forecasting. The h-step ahead forecast of xt, denoted as xt[h], is thus accomplished as

xt[h] = ṽJ,t[h] +
J∑

j=1

w̃j,t[h], (26)

where ṽJ,t[h] and w̃j,t[h] are the h-step ahead forecasts of ṽJ,t and w̃j,t.

4.1 Avoiding positivity constraints

Forecasting based on Eq. 26 can generally lead to forecasts of volatility that are negative.
However, volatility must be always positive. To avoid these problems we propose to work with
the logarithm of volatility (hereafter log volatility) defined as

Ht ≡ ln ht. (27)

If Eq. 6 holds and if ut (of Eq. 6) is Gaussian then (see also e.g. [5])

ln(r2
t ) = Ht + ln(u2

t ). (28)

E
{
ln(u2

t )
}

= −1.27, var
{
ln(u2

t )
}

=
π2

2
.
= 4.93. (29)

Logarithm of squared log returns is thus a very noisy estimator of log volatility. Moreover, the
probability distribution of the noise ln(u2

t ) is highly asymmetric.
Analogously to subsection 2.2 we may rather use the logarithm of the Garman-Klass esti-

mator defined in Eq. 9 rather than the logarithm of squared log returns to proxy log volatility.
Let us define

Lt ≡ ln(Kt). (30)

If the process of stock prices is random walk then

Lt = Ht + ln(ζt), (31)

where ln(ζt) are i.i.d. variables independent of Ht with approximately Gaussian distribution
and [14]

E {ln(ζt)} .
= −0.13, (32)

var {ln(ζt)} .
= 0.26. (33)
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4.2 Dynamics of individual scales

In Eq. 26 we should thus substitute xt for Lt and at the same time assume that w̃j,t and ṽj,t

are the Haar wavelet and scaling coefficients of Lt. To accomplish the multiscale forecast each
individual scale has to be forecast (i.e. wavelet and scaling coefficients of individual levels have
to be forecast). We may either forecast each scale only from the past dynamics of the scale itself
(i.e. independently from the past dynamics of other scales) or we may accomplish the forecast
of each scale taking into account not only the dynamics of the scale itself but also the dynamics
of other scales. While the former approach is an easier one the latter would presumably result
in more accurate forecasts because the dynamics of individual scales are not independent (see
e.g. [6]).

If we resort to forecasting each individual scale independently from other scales still many
forecasting approaches may be used ranging from linear (e.g. ARMA models) to non-linear
forecasting (e.g. neural networks), from parametric to non-parametric etc. Different authors
(while not dealing with forecasts of volatility) have proposed different models for the dynamics
of (wavelet and scaling) coefficients in general. To give a few examples, Yousefi et al. [22] fit
a spline to the scaling coefficients and a sine to the wavelet coefficients. Renaud et al. [21]
propose to use only a ”special” subset of coefficients of each scale to forecast the next coefficient.
The dynamics of this subset is modeled as an autoregressive process.

4.3 ARMA models for individual scales

To illustrate the pitfalls of ARMA modeling of coefficients let MODWT up to level J be applied
on the historical time series of Lt. Let w̃j,t, j = 1, . . . , J be the jth level wavelet coefficients and
ṽJ,t the Jth level scaling coefficients. If Lt is stationary then w̃j,t, j = 1, . . . , J and ṽJ,t are also
stationary (see e.g. [3]). Moreover, the wavelet coefficients have been obtained by applying a
band-pass filter (passing approximately the band of frequencies 1

2j+1 < |f | ≤ 1
2j ) onto the time

series Lt. Similarly, the scaling coefficients have been obtained by applying a low-pass filter
(passing approximately the band of frequencies 0 ≤ |f | ≤ 1

2j+1 ) onto the time series Lt. Thus
the dynamics of the coefficients is different from the dynamics of the traditional full-band time
series.

To truly explore the dynamics of MODWT coefficients we took 28 components3 of the
Dow Jones Index (DJI)4 in the period from January 1, 1995 till August 31, 2010. In Fig. 1
the average autocorrelation sequence (ACF) and the average partial autocorrelation sequence
(PACF) of the MODWT coefficients is plotted for individual scales. The deviations of ACF
and PACF of individual components of DJI from the average shape are very small (and thus
are not plotted in the figure). We see that wavelet coefficients seem to be stationary and have
short memory only. Moreover, coefficients w̃j,t and w̃j,t+τ for τ ≥ 2j are not correlated. This is

3Alcoa, American Express, Boeing, Bank of America, Caterpillar, Chevron, EI DuPont de Nemours, Walt
Disney, General Electric, Cisco, Home Depot, Hewlett-Packard, IBM, Intel, Johnson&Johnson, JP Morgan
Chase, Coca-Cola, McDonald’s, 3M, Merck, Microsoft, Pfizer, Procter & Gamble, AT&T, United Technologies,
Verizon Communications, Wal-Mart Stores, Exxon Mobil.

4Data from http://finance.yahoo.com/
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in agreement with the fact that MODWT wavelet coefficients of long-memory processes (which
might be the case of volatility) downsampled by a factor of 2j are approximately uncorrelated
(see e.g. [19]). It might be thus possible to model the jth level MODWT wavelet coefficients
as an MA(2j − 1) process. On the other hand the scaling coefficients have long memory and
could be modeled for example as an ARFIMA process.
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Figure 1: The average ACF (first column) and the average PACF (second column) for the
MODWT coefficients of the log Garman-Klass estimate of 28 components of DJI for levels
j = 1, . . . , 4 of wavelet coefficients (row 1 to 4) and the 4th level of scaling coefficients (row 5).

4.4 Evaluation of the forecast

When the model for each individual scale is identified (and estimated) the forecast of the each
individual scale can be carried out. Then, the h-step ahead forecast of Lt is given as

Lt[h] = ṽJ,t[h] +
J∑

j=1

w̃j,t[h], (34)
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Traditional forecast measures such as MAE, MAPE, MSE, Theil’s U-statistic etc. may be used
to assess the forecast accuracy. In the evaluation of the forecast accuracy Lt may be used to
proxy the true Ht (i.e. the forecast error is given as Lt+h − Lt[h]). Different classes of models
may be studied to assess which one has the greatest prediction power:

• Multiscale models based on the mathematical identity of Eq. 34.

• Multiscale models such as Market-component ARCH (see [12]), HARCH (see [15]) etc.
rewritten for the logarithmic volatility.

• Classical models of log volatility such as the log-GARCH(p,q) model of [9], [18], [13], the
EGARCH model of [17], long memory stochastic volatility model of [5] etc.

5 Conclusion and discussion

In this paper we have argued that forecasting volatility based on the multiscale approach might
be suitable and might capture the observed multiscale properties of volatility, whereas the tra-
ditional models of volatility are not capable of capturing these properties (see e.g. [12]). We
have proposed a multiscale approach to modeling volatility that is based on the mathematical
identity of Eq. 25. To avoid positivity constraints we propose to work with the logarithm of
volatility and to use the logarithm of the Garman-Klass estimator as its proxy. Still many
questions remain open: ”Should we forecast each scale independently or all scales simultane-
ously?”, ”What model for the scale dynamics should be used?” etc. We have also demonstrated
(on simple ARMA models) that series of wavelet and scaling coefficients should be treated in
a little bit different way than traditional full-band time series. Further comprehensive analysis
and research (which is being pursued by the author) is required to quantitatively assess whether
multiscale models of volatility provide any substantial benefit for forecasts of volatility.
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USE   OF  THE  L-MOMENT   METHOD   IN  MODELING 

   THE  WAGE DISTRIBUTION 
 

BÍLKOVÁ Diana  (CZ) 
 
 

Abstract. L-moments are based on the linear combinations of order statistics. The question of 
L-moments presents a general theory covering the summarization and description of sample 
data sets, the summarization and description of theoretical distributions, but also the estimation 
of parameters of probability distributions and hypothesis testing for parameters of probability 
distributions. L-moments can be defined for any random variable in the case that it\s mean 
exists. Within the scope of modelling of wage distributions we currently use the method of 
conventional moments, the quantile method or the maximum likelihood method. The theory of 
L-moments parallels the other theories and the main advantage of the method of L-moments 
over these methods is that L-moments suffer less from impact of sampling variability. L-
moments are more robust and they provide more secure results in the case of small samples.  
The three-parametric lognormal distribution is one from the most frequent used distributions 
within the frame of modelling wage and income distribution. In the case of wage distributions 
we usually work with very large data sets and in such cases the method of L-moments provides 
say about alike accurate results as for example the method of moment or quantile method. The 
question of fitness of concrete parametric distribution for model of wage distribution tends to 
rejection of tested hypothesis about supposed form distribution practically always in the cases of 
such large samples. 
In this connection we can see close relationship between sample size and the value of criterion 
χ2, too. The forecasts of wage distributions were constructed based on the observance of 
previous development. Within the frame of the financilal crisis were set free the employees with 
very low wages above all. The effect of this truth to forecasts of wage distribution will be 
exactly known in the autumn of this year. 
 
Key words. L-moments, linear combination of order statistics, wage distributions, lognormal 
distribution 
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1 Introduction 
 
In the capitalistic economy, the attention of economists is attracted by methods of forecasting the 
population consumption and correspondingly the demand for goods and services. It however needs 
to be noted that the forecast of the population demand for goods and services is not the only goal of 
the population income analysis. It is possible to use the knowledge of the population income 
distributions for instance in analysis of the standard of living or in its interregional or international 
comparison.   It would on the other hand not be fully correct to state that the wage distribution or 
differentiation (reflected by some volatility measure) analysis are itself sufficient for the standard of 
living analysis. Detailed analysis of the wage component of the standard of living requires the 
knowledge of the full wage distribution in the particular time of interest, especially the knowledge 
of the number of units with the income below certain threshold. 
In the field of statistics, it is possible to encounter another indirect usage of the knowledge of the 
wage distribution. Namely, it is the improvement of the statistical sampling methodology when 
researching a variable which is highly correlated with the wages. For example we can name the 
expenditures of an individual or household, equipment of the households, time usage, buying 
behavior, or variables representing opinions in the case of sociological researches. 
Common statistical methodology for description of the statistical samples is based on using 
conventional moments or cummulants. Also when fitting with an appropriate parametrical 
distribution for the given data sample, the moment method is often used. This method is based on 
setting the conventional sample moments equal to the corresponding moments of the theoretical 
distribution. Nevertheless the moment method is not always appropriate, especially in the case 
of small samples.  It can be found in the statistical literature [2] that the moment method of the 
parameter estimates is often less accurate than other methods such as the maximum likelihood 
method. 
An alternative approach is based on using different characteristics which are called the L-moments. 
The L-moments are an analogy to the conventional moments, but are based on linear combinations 
of the rank statistics, i.e. the L-statistics. Using the L-moments s theoretically more appropriate than 
the conventional moments because the L-moments characterize wider range of distributions. When 
estimating from a sample, L-moments are more robust to the existence of the outliers in the data. 
The experience shows that in comparison with the conventional moments are the L-moments more 
difficult to distort and in finite samples converges faster to the asymptotical normal distribution. 
The parameter estimates using the L-moments are especially in the case of small samples are often 
even more precise than estimates calculated using the maximum likelihood method. 
This text concerns with the application of the L-moments in the case of larger samples and with the 
comparison of the precision of the method of the L-moments with the precision of other methods 
(moment and quantile method) of the parameter estimates in the case of larger samples. Based on 
these analysis using three parametric lognormal distribution, predictions were calculated for the 
period of the financial crisis, which occurred in the fall 2008, but assuming that the recent trend will 
continue. The wage distributions are analyzed by sectors of economy. The data used were collected 
and published by the Czech statistical office. Namely the shares of the employees in ranges of the 
monthly gross wages by industry in the period since 2002 to 2008 and the corresponding sample 
sizes. There were 84 datasets of the monthly gross wages in the form of the interval frequency 
distributions with opened lowest and highest interval. Data were analyzed with MS Excel and 
specialized statistical software SAS and Statgraphics. 
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2 Methodology 
 
2.1 L-moments of the probability distributions 
 
We will assume that X is a real random variable with the distribution function F(x) and quantile 
function x(F) and X1:n ≤ X2:n ≤ … ≤ X n:n are the rank statistics of the random sample of the size n 
selected from the distribution X. Then the r-th L-moment of the random variable X is defined as 
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The letter ‘L’ in the name ‘L-moments’ is to stress the fact that r-th L-moment λr is a linear function 
of the expected rank statistics. Natural estimate of the L-moment λr based on the observed sample is 
furthermore a linear combination of the ordered values, i.e. the so called L-statistics. The expected 
value of the rank statistic is of the form 
 

.)(d)]([1)]([
!)(!1)(

! 1
: xFxFxFx

jrj

r
EX jrj

rj 


   
 

(2)

 
If we plough the equation (2) in the equation (1), we get after some operations 
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The symbol Where )(FPr
  represents r-th shifted Legender’s polynom představuje which is related to the 

usual Legender’s polynoms. Shifted Legender’s polynoms are orthogonal on the interval (0,1) with a 
constant weight function. First four Legender’s polynoms are of the form 
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Details about the L-moments can be found in [3] or [4]. The coefficients of the L-moments are defined as  
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L-moments λ1, λ2, λ3, …, λr and coefficients L-moments τ 1, τ 2, τ 3, …, τr can be used as the 
characteristics of the distribution. L-moments are in a way similar to the conventional central 
moments and coefficients of L-moments are similar to the moment ratios. Especially L-moments λ1 
and λ2 and coefficients of the L-moments τ3 and τ4 are considered to be characteristics of the 
location, variability and skewness. 
Using the equations (6) to (8) and the equation (10), we get the first three L-moments of the three 
parametric lognormal distribution LN(μ, σ2, ξ), which is described e.g. in [1]. The following 
relations are valid for these L-moments 
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where erf(z) is the so called error function defined as 
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2.2 Sample L-moments 
 
We will assume that x1, x2, …, xn is a random sample and x1:n ≤ x 2:n ≤ … ≤ x n:n  is the ordered 
sample. The r-th sample L-moment is defined as 
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We can write specifically for the first four sample L-moments 
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Sample L-moments can be used similarly as the conventional sample L-moments because they 
characterize basic properties of the sample distribution and estimates the corresponding properties 
of the distribution from which were the data sampled. They might be also used to estimate the the 
parameters of this distribution. In these cases, L-moments are of then used instead of the 
conventional moments because as linear functions of the data are less sensitive on the sample 
variability or the error size in the case of the presence of the extreme values in the data than the 
conventional moments. Therefore it is assumed that the L-moments provide more precise and robust  
estimates of the characteristics or parameters of the population probability distribution. 
 
 
2.3 Parameter estimates 
 
Let us denote the distribution function of the standard normal distribution as Φ, then Φ−1 represents the 
quantile function of the standard normal distribution. The following relation holds for the distribution 
function of the three parametric lognormal distribution LN(μ, σ2, ξ) 
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The coefficients of the L-moments (10) are then commonly estimated using the following 

estimates 
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The estimates of the three parametric lognormal distribution can then be calculated as  
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2.4 Appropriateness of the model 
 
When judging the appropriateness of the constructed model, it is necessary to take an advantage of 
some criterion which could be for example the sum of the absolute differences of the observed and 
theoretical frequencies for all intervals 
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or the popular criterion χ2 
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where ni are the observed frequencies in the particular intervals, πi are the theoretical probabilities n 
the particular intervals and n.πi are theoretical frequencies in the intervals i = 1, 2, …, k. 
The question of the appropriateness of the given curve as a model was described for example in [1]. 
The problem is that for large samples, which are common in the case of wage distributions, is for a 
given significance level is the power of the test so high that the test uncovers even the smallest 
differences of the observed distribution from the theoretical distribution. The test results in almost 
every case it the rejection of the tested hypothesis about the tested distribution. From practical point 
of view however, negligible differences are not important and a approximate correspondence of the 
model with the reality. In these cases, we only ‘borrow’ the model distribution. The criterion χ2 is 
used only for indication and the most important is the logical analysis and experience. 
 
 
3 Outputs 
 
The first sample L-moments for the wage distributions in the period 2002 – 2008 by industry 
segments, parameter estimates of the three parametric lognormal distribution using the method 
of the L-moments for each of these distributions, prediction of the first three L-moments for the 
years 2009 and 2010 based on the assumption of the continuing trend in the wage distributions and 
parameter estimates of the three parametric log normal distribution based on these predictions, were 
computed. Calculated values for the education, health and financial intermediation are presented 
in Tables 1 – 3. 
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Tab 1: Sample L-moments and estimated parameters of the three-parametric lognormal 
distribution using the L-moment method for the „Education“ 

 
Rok 

Sample L-moments Estimated parameters 
 

l1 
 

l2 
 

l3 
 

̂  ̂2  
 

̂  

2002 16 386,38 3 439,67 622,48 9,643 557 0,139 152 – 146,938 7 
2003 18 058,37 3 612,52 553,68 9,877 577 0,099 364 – 2 422,762 8 
2004 18 572,98 4 005,83 165,42 11,336 010 0,007 139 – 65 511,643 2 
2005 19 986,45 4 452,03 330,59 10,847 275 0,023 124 – 32 005,152 6 
2006 21 287,43 4 506,65 560,78 10,323 292 0,065 244 – 10 155,013 7 
2007 22 807,50 5 282,73 795,83 10,276 473 0,095 959 – 7 661,113 6 
2008 23 572,45 5 439,92 981,61 10,105 232 0,138 335 – 26 50,734 2 
2009 24 920,40 5 978,94 1 498,13 9,808 665 0,270 734 4 092,847 8 
2010 26 126,50 6 479,92 2 052,26 9,574 152 0,440 836 8 190,418 3 

Source: own research 

 
 
 

Tab 2: Sample L-moments and estimated parameters of the three-parametric lognormal 
distribution using the L-moment method for the „Health“ 

 
Rok 

Sample L-moments Estimated parameters 
 

l1 
 

l2 
 

l3 
 

̂  ̂2  
 

̂  

2002 16 596,18 3 820,22 1 158,81 9,107 016 0,402 672 5 566,413 5 
2003 17 919,29 4 024,26 1 144,10 9,248 044 0,351 712 5 538,512 0 
2004 18 493,39 4 322,67 1 586,68 8,944 760 0,602 922 8 128,071 3 
2005 19 465,65 4 566,45 1 617,91 9,055 873 0,559 007 8 133,748 1 
2006 20 995,56 4 948,78 1 659,84 9,220 306 0,497 544 8 042,630 4 
2007 22 223,22 5 590,14 2 181,30 9,100 374 0,687 796 9 587,627 8 
2008 23 417,13 5 932,97 2 385,35 9,108 038 0,733 925 10 387,246 5 
2009 24 780,30 6 569,63 2 672,97 9,188 873 0,753 225 10516,425 0 
2010 26 228,40 7 217,97 3 029,03 9,226 932 0,805 984 11015,122 1 

Source: own research 
 

Tab 3: Sample L-moments and estimated parameters of the three-parametric lognormal 
distribution using the L-moment method for the ”Financial intermediation“   

 
Rok 

Sample L-moments Estimated parameters 
 

l1 
 

l2 
 

l3 
 

̂  ̂2  
 

̂  

2002 27 071,61 6 269,51 1 274,60 10,109 901 0,176 348 220,161 2 
2003 28 866,04 6 070,04 1 018,58 10,296 447 0,119 376 – 2 583,336 5 
2004 31 304,60 7 538,02 1 926,61 10,015 190 0,282 043 5 554,051 9 
2005 32 510,71 7 542,84 1 762,21 10,128 246 0,234 407 4 356,585 2 
2006 33 722,95 7 734,91 1 643,30 10,268 057 0,192 940 2 008,516 8 
2007 39 245,79 11 529,78 4 098,97 9,976 728 0,563 082 10 728,402 3 
2008 40 796,58 11 651,34 3 823,41 10,109 117 0,475 072 9 643,984 5 
2009 43 455,80 14 173,20 4 580,78 10,327 378 0,460 073 4 994,253 2 
2010 46 538,70 16 605,50 5 659,51 10,406 706 0,514 733 3 748,150 4 

Source: own research 

 
The estimated value of the parameter ξ is in many cases negative. That means that the lognormal 
curve starts in negative values. Because however, in the lower tail, the curve is very close to the 
horizontal axes, the negative values if the parameter ξ do not have to distort the correspondence of 
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the model with the reality. In such cases, the parameter ξ should however not have any real 
interpretation. 
The values of the test criterion (27) result in all cases of the wage distributions to the rejection 
of the tested hypothesis of the assumed three parametric lognormal distribution, as can be in the 
case of the wage and income distribution expected. It was obvious during the calculation of the sum 
of the absolute differences (26) and the test criterion (27) that most of the inaccuracies are in both 
tails of the distributions. If we excluded the lowest and highest (opened) intervals, the method of L-
moments would result in much more precise results. The preciseness of the method of L-moments 
was here compared to the method of moments and to the quantile method. It can be stated that in the 
case of such large samples, the method of L-moments is as accurate as the method of moments and 
the quantile method.  
The predictions of the wage distributions for the years 2009 and 2010 assuming continuing trend 
can be found in the table 4 and 5.  
 
4 Conclusion 
 
One of the most often distributions applied for the modeling of the wage and income distributions is 
the lognormal distribution. Most often the three parametric lognormal distribution. To estimate the 
parameters of this distribution, several different methods can be used. E.g. the method of moments, 
the quantile method, Kemsley’s or Cohen’s method etc. One of the possibilities of how to estimate 
parameters of this distribution is using the method of the L-moments.  
The method of L-moments commonly leads, in the case of small samples, in much more accurate 
results then other methods (including the maximum likelihood method). It was shown that in the 
case of large smples, the method of L-moments leads to similarsly accurate results as the method of 
moments or the quantile method.  
When solving the question which method of the parameter estimates of the three parametric 
lognormal distribution is the most accurate, the dependence of the criterion χ2 on the sample size 
was apparent. As is common for the samples of such size, all tests resulted in rejection of the null 
hypothesis about the assumed distribution (see above). The predictions of the wage distributions for 
the particular segments of the industry for the years 2009 and 2010 were constructed assuming that 
the trend will continue. The question however remains what will be the impact of financial crisis on 
the distribution of the wages (both the location and variability). During the financial crisis, many 
employees with low wages lost their jobs. This fact can have impact on the location of the wage 
distribution and for sure will have an impact on the wage differentiation. 
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ROBUST   FILTERING   OF  TIME   SERIES 

 
BLATNÁ  Dagmar,  (CZ) 

 
 

Abstract. Several applications of robust filtering of time series is demonstrated. These methods 
are increasingly important due to their stability to sudden impulses and outliers. Median 
smoothers together with moving median absolute deviation were directly used as a part of price 
indicators in technical analysis. Both Moving Median and Robust Bollinger Bands proved to be 
useful in forecasting of principal turning point in WIG stock index.  Second, Artificial Neural 
Networks (ANN) represents another tool with ability to approximate almost any nonlinear 
function arbitrarily close. Particularly in financial time series with complex nonlinear dynamical 
relationships, the ANN can provide a better fit compared with parametric linear models. Once 
again, these properties were demonstrated on 10-week forecasts of WIG stock index. The results 
obtained clearly show, ANN with one or two hidden layers are capable to predict correct 
direction. 
 
Key words. Robust filtering, technical analysis, artificial neural networks, forecasting in time 
series 
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1 Introduction to robust filtering 
 
 
Noise removal and signal extraction are important aspects in time series analysis. Using linear 
smoothers, e.g. moving averages, the results obtained are influenced by sudden impulses, outliers 
and noise coming from heavy tailed distributions with high kurtosis. For these reasons, nonlinear 
smoothers are of increasing importance. 
Median smoother related to a value tx  is defined as 
 

    1 1, ,..., ,..., ,n t n t n t t n t nM t med x x x x x       (0.1) 
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with running window of length 2 1n  . Tukey suggested to combine running median smoothers and 
linear smoothers to improve the properties of running medians [1]. Thus, smoothers named 3RSS, 
5RSS, 3RSSH, 5RSSH and further have been created. The notation used has the following meaning. 
R  denotes repeated resmoothing, i.e. one smoother is applied to the results of the same smoother 
used previously. S denotes splitting, where the data sequence is divided into two separate parts, each 
end is smoothed separately and the parts are joined together. H  denotes so-called hanning, i.e. the 
application of running weighted average provided that the weights sum must be one. 
LULU smoothers are local nonlinear filters consisting of the suboperators L (Low) and U (Upper). 
They are defined as [2] 
 

 
     
     

max min ,..., ,..., min ,..., 1, 2,...

min max ,..., ,..., max ,...,

n t n t t t n

n t n t t t n

L t x x x x n

U t x x x x

 

 

   
   

 (0.2) 

 

Then, we can combine these basic smoothers to define class of LULU smoothers. For example, the 
smoothers nC  (Ceiling) and nF  (Flooring) are recursively defined as 
 

 1 1 1 1

1 1 1 1

n n n n

n n n n

C L U C C LU

F U L F F U L




 
 

 (0.3) 

 

The result of the 1 1LU  application is demonstrated on Fig.1. Clearly, both upper and lower outliers 

are filtered out. 
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Fig. 1    The time series X filtered by 1 1L U  combination 

 
 
Similarly, we can introduce Moving Median Absolute Deviation as an important robust moving 
characteristics of scale: 
 

        ,..., ,...,n t n n t n t n nt med x M t x M t x M t         (0.4) 
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Both this characteristic and running medians will be used in the following chapter. 
2 Price indicators in technical analysis 
 
Technical Analysis is a method of the estimation of stock prices, based on the study of the 
behaviour of individual stocks and global market [3]. Probable future price development is 
predicted on the basis of past prices and/or trade volumes. 
Technical indicator is a function assuming for each trade day t  certain value dependent on past 
information. We employ here selected price indicators, where only past stock prices are used for 
generating of trade signals. Because we want to predict trend decrease, only SELL signals will be 
investigated. Our aim will be the robustification of individual indicators, which may result from the 
use of moving medians and moving median absolute deviation. 
 
Moving Median (MM) of length n  is computed here using the last n  price values 
 

  1 1, ,...,t t t t nMM med X X X    (2.1) 
 

 In the basic form, trade signals are given by intersection of the price and moving median and SELL 
signals are generated on condition 
 

    1 1t t t tX MM X MM SELL      (2.2) 
 

However, this version produces rather high number of trade signals. Therefore, more preferable is 
the use of a combination of two moving averages of different lengths: short-period 1n  and long-
period 2n . Then, the formula (2.2) will be modified to 
 

          1 1 1 2 1 2t t t tMM n MM n MM n MM n SELL      (2.3) 
 

The natural choice in our analysis is the selection 1 5n   (weekly moving medians) and 2 21n   

(monthly moving medians). 
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Fig. 2   MM Indicator: intersections of 5-day and 21-day moving medians 

 
Thus, according to our trade system, the first SELL signal occurs at 638, i.e. 7 days after the 
absolute maximum at 631. 
Several types of technical indicators are based on the construction of bands (envelopes) around 
moving averages. The bandwidth can be either constant or variable in dependence on price 
volatility. We construct here Robust Bollinger Bands (RBB)  
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        ,U L
t t t t t tRBB MM n c n RBB MM n c n       (2.4) 

 

and use bandwidths proportional to median absolute deviation  t n  with the values  21, 1n c  . 

The SELL signal is generated under condition 
 

    1 1
U U

t t t tX RBB X RBB SELL      (2.5) 
 

This  trade system produces  SELL signals at time points 611, 613, 627 and 633, i.e. 20, 18 and 4 
days before reaching the absolute maximum at 631 (see Fig.3). 
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Fig. 3   Robust Upper Bollinger Band with parameters n = 21,  c = 1 

 
 
3 Artificial neural networks 
 
Artificial neural networks (ANN) are now frequently used in many modelling and forecasting 
problems, mainly thanks to the possibility of the use of computer intensive methods [4],[5]. 
Recently, they have been increasingly applied in financial time series analysis as well. The main 
advantage of this tool is the ability to approximate almost any nonlinear function arbitrarily close. 
Particularly in financial time series with complex nonlinear dynamical relationships, the ANN can 
provide a better fit compared with parametric linear models. On the other hand, usually it is difficult 
to interpret the meaning of parameters and ANN are often treated as „black box“ models 
constructed for the pattern recognition and prediction. Further, excellent in-sample fit does not 
guarantee satisfactory out-of-sample forecasting. 
Generally, the ANN is supposed to consist of several layers. The input layer is formed by individual 
inputs (explanatory variables). These inputs are multiplied by connection strengths which are called 
weights in statistical terminology. Further, there is one or more hidden layers, each consisting of 
certain number of neurons. In the hidden layer, the linear combinations of inputs are created and 
transformed by the activation functions. Finally, the output is obtained as a weighted mean of these 
transformed values. Usually, this kind of ANN is referred to as multilayered feedforward network 
and we restrict ourselves to the models with one or two hidden layers. It is useful to realize, 
information flows only in one direction here, from inputs to output. In time series problems, 
variables are measured over a time interval and we suppose to exist relationships among variables at 
successive times. In this case, our objective is to predict future values of a variable at a given time 
either from the same or other variables at earlier times. We restrict here to the case, when single 
numeric variable is observed and its next values is predicted using number of lagged values. 
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The mathematical representation of the feedforward network with one hidden layer and logsigmoid 
activation functions is given by the following system [4] 
 

  

, ,0 , ,
1

, ,

0 , ,
1 1

1/ 1 exp

I

k t k k i i t
i

k t k t

K I

t k k t i i t
k i

n w w x

N n

Y N x



 

 

    

     



 

 (3.1) 

  
 

The first equation describes the creation of linear combination of input variables, whereas second 
one expresses the transform by logsigmoid activation function. The third equation explains that 
output value can be obtained either from neurons or from inputs directly. Clearly, if there are no 
hidden layers, the model reduces to purely linear one.  
To demonstrate the capability of ANN from regression point of view, the simulation was performed 
using the following model 
 

      3sin 0 5 1t t t t tX t u I Y u I Y      (3.2) 
 

where the first term on right hand side represents the signal (pure sine wave with amplitude 3)    and 

tu  is  0,1N i.i.d., whereas tY  is Bernoulli i.i.d. with parameter 0.1p  . Thus, normal random 

noise was randomly contaminated. The picture of the whole situation is following 
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Fig. 4   Sinusoidal signal with contaminated random noise 
 

Using optimal configuration of ANN with two hidden layers and 8 and 6 neurons in them, we 
obtained predicted values tP  and residuals. Then, we are able to compute individual deviations of 

predicted values from the signal and mean absolute deviation 
 

 
1

1
3sin

n

t t t
t

d t P MAD d
n 

     (3.3) 
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Fig. 5   Time series of  individual deviations of predicted values from the signal 

                MAD = 0.165,  n = 360 
 
Further, this tool has been applied to weekly closing values of WIG index in Poland during the 
period 2005-2009, i.e. 252 weekly observations. Obviously, there is sharp peak at the time 127 
corresponding with absolute maximum. Thus, ANN was trained at the interval 1-127 with the aim 
to create 10-week forecast 127-138. 
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Fig. 6   Time series of  weekly closing values of WIG index (Poland)  

 
The results obtained are summarized in Tab.1 and Fig.7. As for ANN type, either 5 or 10 lagged 
closing values were used for either 1 or 2 hidden layers. For example, 5(4) denotes the model with 5 
lagged closing values and 1 hidden layer containing 4 neurons, whereas 10(2,4) denotes the model 
with 10 lagged closing values and 2 hidden layers containing 2 and 4 neurons. Further, X  are true 
closing values and pX  forecasts. The forecast accuracy has been measured by mean absolute 

deviation, computed as 
 

 
1

10 pMAD X X   (3.4) 
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Tab. 1   The results of ANN forecasting:  weekly closing values of WIG index (Poland) 
 

ANN type   5(2,3) 5(4) 10(2,4) 5(2,3) 5(4) 10(2,4) 

Number X Xp Xp Xp AD AD AD 

128 65989,73 62646,67 63034,94 64142,05 3343,06 2954,79 1847,68

129 65257,29 61615,29 60533,67 63212,76 3642,00 4723,62 2044,53

130 62609,47 60846,77 59109,48 61741,32 1762,70 3499,99 868,15

131 61684,42 60507,00 58850,11 60828,24 1177,42 2834,31 856,18

132 58395,54 60524,90 60287,03 60408,29 2129,36 1891,49 2012,75

133 56759,16 60268,80 60828,28 59766,55 3509,64 4069,12 3007,39

134 60073,46 60144,76 60655,35 60008,91 71,30 581,89 64,55

135 61010,54 60035,70 59957,44 60076,89 974,84 1053,10 933,65

136 58174,13 59962,91 59060,75 59813,00 1788,78 886,62 1638,87

137 59984,91 59931,79 58744,60 59666,58 53,12 1240,31 318,33

   MAD MAD MAD     

    1845,221 2373,522 1359,209      
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Fig.7   The results of ANN forecasting:  weekly closing values of WIG index (Poland) 
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PRELIMINARY RESULTS
ON ASYMMETRIC BAXTER-KING FILTER

BUSS Ginters, (LV)

Abstract. The paper proposes an extension of the symmetric Baxter-King band pass
filter to an asymmetric Baxter-King filter. It turns out the optimal correction scheme of
the ideal filter weights is the same as in the symmetric version, i.e, cut the ideal filter at
the appropriate length and add a constant to all filter weights to ensure zero weight on
zero frequency. Since the symmetric Baxter-King filter is unable to extract the band of
frequencies at the very ends of the series, the extension to an asymmetric filter is useful
whenever the real time estimation is needed. The paper assesses the filter’s properties
in extracting business cycle frequencies, in comparison to the symmetric Baxter-King
filter and symmetric and asymmetric Christiano-Fitzgerald filter, by using Monte Carlo
simulation. The results show that the asymmetric Baxter-King filter is superior to the
asymmetric Christiano-Fitzgerald filter for the whole sample space, including the very ends
of a sample, thus indicating that the asymmetric Baxter-King filter should be preferred
over the asymmetric Christiano-Fitzgerald filter in real time signal extraction exercises.
Key words and phrases. real time estimation, Christiano-Fitzgerald filter, Monte Carlo
simulation, band pass filter, asymmetric filter.
Mathematics Subject Classification. Primary 60G35; Secondary 62M20.

1 Introduction

This paper considers a simple extension of the symmetric Baxter-King band pass filter (Baxter
and King, 1999) to an asymmetric version of it. Such modification, to the best of my knowledge,
has not yet been discussed in the literature. Symmetric filters are not applicable at the very
ends of an input signal without the extension of the ends with forecasts. Thus, asymmetric
band pass filters are necessary to extract the desired band of frequencies at the ends of an input
signal, if forecasting is not used for extending the ends of the input signal.
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The closest band pass filter to the Baxter-King filter is Christiano-Fitzgerald band pass
filter (Christiano and Fitzgerald, 2003) which, in general, is asymmetric, and whose default
specification is optimized for an input signal following a random walk (RW) process, but it
allows the input signal to follow other data generating processes (DGP). However, Christiano
and Fitzgerald (2003) argue that their default specification of the filter is a good approximation
to many DGPs observed in macroeconomic time series and, thus, macroeconomists may opt for
it. Although Christiano and Fitzgerald (2003) compares their filter to the symmetric Baxter-
King filter, they do not elaborate on an asymmetric version of the Baxter-King filter.

Thus, this paper tries to fill the gap in the literature by formally developing an asymmet-
ric version of the Baxter-King filter and assessing its properties in extracting business cycle
frequencies, in comparison to the symmetric Baxter-King filter and symmetric and asymmet-
ric default specification of Christiano-Fitzgerald filter, by using Monte Carlo simulation. The
results show that the asymmetric Baxter-King filter is superior to the asymmetric Christiano-
Fitzgerald filter at the very ends of a sample, thus indicating that the asymmetric Baxter-King
filter should be preferred over the asymmetric Christiano-Fitzgerald filter in real time signal
extraction exercises.

The paper is organized as follows. Section 2 develops the filter and Section 3 assesses the
performance of the filter by means of Monte Carlo simulation.

2 The Asymmetric Baxter-King Filter

Consider the following orthogonal decomposition of the zero-mean covariance stationary stochas-
tic process, xt:

xt = yt + x̃t. (1)

The process, yt, has power only in frequencies belonging to the interval {[a1, a2]∪ [−a2,−a1]} ⊂
(−π, π), where 0 < a1 < a2 < π. The process, x̃t, has power only in the complement of this
interval in (−π, π). By the spectral representation theorem,

yt = b(L)xt, (2)

where the ideal band pass filter, b(L), is

b(L) =
∞∑

h=−∞
bhL

h, Lhxt = xt−h, (3)

where

bh =
sin(ha2) − sin(ha1)

πh
, h = ±1,±2, . . .

b0 =
a2 − a1

π
, a1 =

2π

pu

, a2 =
2π

pl

, (4)

and pu, pl ∈ (2,∞) define the upper and lower bounds of the wave length of interest. With bh’s
specified as in (4), the frequency response function of the ideal filter at frequency ω is

β(ω) = 1 for ω ∈ [a1, a2] ∪ [−a2,−a1]

= 0 otherwise. (5)
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Baxter and King (1999) have proposed to obtain a symmetric, fixed length approximation to
the ideal filter, (3) and (4), by minimizing

Q =

∫ π

−π

δ(ω)δ(−ω)dω

s.t.

β̂(0) =
K∑

k=−K

b̂k = 0

b̂k = b̂−k, (6)

where δ(ω) = β(ω)− β̂(ω) is the discrepancy between the exact and the approximate filters at
frequency ω, and the constraint β̂(0) = 0 is to ensure zero weight on the trend frequency, in line
with the assumption a1 > 0. The solution to (6) is a truncation of the ideal filter symmetrically
at length K, and addition of a constant (−∑K

k=−K bk)/(2K + 1) to all filter weights to ensure

β̂(0) = 0. Baxter and King (1999) suggest the value of K to be about 3 years, i.e, K=12
for quarterly data, and K=36 for monthly data. The symmetry of the filter together with the
condition b̂k = b̂−k implies that the filter renders stationary time series that is integrated of oder
2 (I(2)) or less. Thus, the symmetric BK filter has trend-reduction property and, therefore, it
can be applied to nonstationary, up to I(2) series.

Since the symmetric BK filter can not be used to extract the desired frequencies at the very
end of the input series (for the first and the last K observations), a natural extension of the
Baxter and King (1999) filter is to allow the approximate filter to be asymmetric, to be able to
use the filter in real time. In order to optimally approximate an ideal symmetric linear filter in
a Baxter-King sense, the problem is to minimize

Q =

∫ π

−π

δ(ω)δ(−ω)dω

s.t.

β̂(0) =

f∑
h=−p

b̂h = 0. (7)

The condition β̂(0) ensures zero weight on zero frequency, thus this asymmetric filter also has
a trend-reduction property, however, it alone, without symmetry, is not sufficient to render I(2)
process stationary. Thus, the ability of the asymmetric BK filter of real time signal extraction
comes at a cost of losing the power to eliminate two unit roots from the input series.

To solve (7), form the Lagrangian

L = Q − λβ̂(0) (8)

with first order conditions (FOCs):

∂L
∂b̂h

=
∂Q

∂b̂h

− λ = 0

∂L
∂λ

= −β̂(0) = 0. (9)
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Since
∂

∂b̂h

[δ(ω)δ(−ω)] =
∂δ(ω)

∂b̂h

δ(−ω) + δ(ω)
∂δ(−ω)

∂b̂h

, (10)

and since the frequency response function of the approximating filter is β̂(ω) =
∑f

h=−p b̂he
−iωh,

it follows that
∂δ(ω)

∂b̂h

= −e−iωh. (11)

(11) implies

∂Q

∂b̂h

= −
∫ π

−π

[e−iωhδ(−ω) + δ(ω)eiωh]dω. (12)

By the property
∫ π

−π
[f(ω) + f(−ω)]dω = 2

∫ π

−π
f(ω)dω (since

∫ π

−π
f(ω)dω =

∫ π

0
f(ω)dω +∫ 0

−π
f(ω)dω =

∫ π

0
[f(ω) + f(−ω)]dω is real, then

∫ π

−π
f(ω)dω =

∫ π

−π
f(−ω)dω, and the prop-

erty follows), (12) becomes

∂Q

∂b̂h

= −2

∫ π

−π

δ(ω)eiωhdω. (13)

By the property ∫ π

−π

eiωne−iωmdω =

∫ π

−π

e−iω(m−n)dω = 0 for n �= m

= 2π for n = m, (14)

obtain
∫ π

−π

δ(ω)eiωhdω =

∫ π

−π

[ ∞∑
k=−∞

bke
−iωk −

f∑
j=−p

b̂je
−iωj

]
eiωhdω = 2π[bh − b̂h]. (15)

Given (15), the FOCs are

−4π[bh − b̂h] − λ = 0. (16)

If there is no constraint on β̂(0), the optimal approximate (in Baxter-King sense) filter is simply
derived by truncation of the ideal filter’s weights. If there is a constraint on β̂(0), then λ must
be chosen so that the constraint is satisfied. For this purpose, rewrite (16) as

b̂h = bh + θ,

where θ = λ/(4π). In order to have β̂(0) =
∑f

h=−p b̂h = 0, the required adjustment is

θ =
−∑f

h=−p bh

p + f + 1
, (17)

which yields the same optimal weight adjustment scheme as in the symmetric Baxter-King filter
case.

The next section describes the results from Monte Carlo simulation to assess the performance
of the proposed filter.
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3 Comparing Filters By Means Of Monte Carlo Simulation

This section assesses the performance of the proposed filter to extract business cycle frequen-
cies (corresponding to wave length between 1.5 and 8 years) in comparison to i) the original
symmetric fixed-length BK filter with K=12 (see (6)), as well as ii) fixed-length symmetric CF
filter with K=12 for RW processes, and iii) default asymmetric specification of CF filter for
RW processes (Christiano and Fitzgerald, 2003). Thus, the asymmetric CF filter assumes that
the first difference of the input signal, i.e, xt −xt−1, is zero-mean covariance stationary process.
The symmetric CF filter allows for the input signal to follow RW with drift.

Consider the following data generating process (DGP):

yt = μt + ct, (18)

where
μt = μt−1 + εt (19)

ct = φ1ct−1 + φ2ct−2 + ηt (20)

εt ∼ nid(0, σ2
ε ), ηt ∼ nid(0, σ2

η). (21)

Equation (18) defines the input signal, yt, as the sum of a permanent component (stochastic
trend), μt, and a cyclical component, ct. The trend, μt, in this case is specified as a random walk
process. The dynamics of the cyclical component, ct, is specified as a second order autoregressive
(AR(2)) process so that the peak of the spectrum of ct could be at zero frequency or at business
cycle frequencies. Disturbances, εt and ηt, are assumed to be uncorrelated.

The spectrum of an AR(2) process is

fc(ω) =
σ2

η

1 + φ2
1 + φ2

2 − 2φ1(1 − φ2) cos ω − 2φ2 cos(2ω)
(22)

with a peak at frequency other than zero for

φ2 < 0 and

∣∣∣∣φ1(1 − φ2)

4φ2

∣∣∣∣ < 1, (23)

with the corresponding frequency ω = cos−1[−φ1(1 − φ2)/(4φ2)] (Box, Jenkins and Reinsel,
1994; Priestley, 1981).

Data are generated from (18) with φ1 = 1.2 and different values for φ2 to control the
location of the peak in the spectrum of the cyclical component. I also vary the ratio of standard
deviations of the disturbances, σε/ση, to change the relative importance of components of yt.
Such DGP can create series with spectral characteristics typical to macroeconomic variables,
such as gross domestic product and inflation (Watson, 1986; Guay and St-Amant, 2005). The
idea of such simulation is taken from Ahamada and Jolivaldt (2010) who, in turn, take it from
Guay and St-Amant (2005).

Particularly, 10000 samples of length 401 are created, with the first 200 observations of each
sample dropped off as burn-in. The vector [φ1, φ2] is set to five different values, as shown in
Table 1. The value of σε/ση is set to change from 0 to 9.9 with step size 0.15 (Watson (1986)
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φ1 φ2 Fundamental period of the cycle (yrs)

1.2 -0.25 ≈ ∞
1.2 -0.35 	 8
1.2 -0.44 8.2
1.2 -0.5 3.5
1.2 -0.8 1.9

Table 1: Five different values of [φ1, φ2] for the DGP.

estimated this ratio for the U.S. GNP to be 0.75).
The performance of filters is assessed by comparing the correlation of the true cyclical

component with the estimated cyclical component, and by comparing the true AR(2) regression
coefficients for the cycle with the fitted AR(2) regression coefficients.

Figure 1: Average correlation between the true and estimated cyclical components for given
[φ1, φ2] and σε/ση values. The correlation is estimated for the whole sample interval except for
the first and the last K=12 observations.

Figure 1 shows an average correlation between the true and estimated cyclical components
for given [φ1, φ2] and σε/ση values. The correlation is estimated for the whole sample interval
except for the first and the last K=12 observations, since fixed-length symmetric filters do not
produce the estimated cycle for those observations. These K=12 observations are deleted from
the output of the asymmetric filters for a fair comparison between symmetric and asymmetric
filters. Figure 1 shows a similar behavior between the filters - their performance decreases with
σε/ση, which is an expected result. When σε/ση = 0, the input signal is the true cycle, so
the output signal (estimated cycle) correlates highly with the input. As σε/ση increases, the
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influence of the permanent component in the input increases, thus making harder for filters to
extract the cycle, thus the estimated correlation between the true and estimated cycles, ρ̂(c, ĉ),
decreases.

Figure 1 also shows that the performance of all filters decreases with an increasing φ2.
The value of φ2 = −0.8 together with φ1 = 1.2 corresponds to the length of the cycle 1.9
years, which is close to the usually defined minimum length of a business cycle, 1.5 years. The
value of φ2 = −0.44 together with φ1 = 1.2 produces the cycle of length approximately 8.2
years, which is close to the usually defined maximum length of a business cycle, 8 years. With
higher then φ2 = −0.44 values, the length of the true cycle rapidly increases. Although with
φ2 = −0.25 the cycle still is considered stationary (φ1 + φ2 < 1), it is a close approximation to
a nonstationary process in a finite sample (Campbell and Perron, 1991). Thus, Figure 1 shows
expected deterioration in performance of BK filters as φ2 increases. The similar deterioration in
performance of the CF filters with an increasing length of the cycle was less expected. Another
unexpected result is the inferior performance of asymmetric filters to their shorter symmetric
counterparts. The results also show that the symmetric BK filter is superior to the symmetric
CF filter for 0 ≤ σε/ση < 0.5 if cycle length is longer than 2 years. For most of the rest of the
region, particularly - cycle length less than 8 years, given σε/ση ≥ 1 - the symmetric CF filter
is slightly superior to the symmetric BK filter. For the remainder, i.e., 0.5 ≤ σε/ση < 1, the
symmetric CF filter shows superiority when cycle is relatively short (up to about 3.5 years),
and the symmetric BK filter shows superiority when the cycle is longer than approximately 3.5
years.

Figure 2: Relative superiority of the asymmetric BK and CF filters in the sample, except for
the first and the last K=12 observations. The horizontal axis represent cycle length, while
the vertical axis represent the importance of permanent component in the series. The results
suggest that, on average in the sample, the asymmetric BK filter is superior to the asymmetric
CF filter.

The simulation results show (not supplied to to space limitation) that the distance between
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the average correlation between the true and estimated cyclical components for given [φ1, φ2]
and σε/ση values from asymmetric BK and CF filters is practically nil at all points in the
sample, when the first and the last K=12 observations are dropped. Figure 2 shows the regions
of (small) relative superiority of the asymmetric BK and CF filters. Figure 2 shows that
the asymmetric BK filter is superior to asymmetric CF filter for all σε/ση values and for any
interesting length of the cycle. A slightly surprising finding from Figure 2 is the inability of
asymmetric CF filter to perform better than the asymmetric BK filter in the region of high
influence of the permanent component (corresponds to lower part of the graph).

Now, let us compare the performance of the asymmetric filters for the K=12 observations of
the sample, where the fixed-length symmetric filters can not be applied. Figure ?? shows the
estimated correlation of the true and estimated cycles at each of the first three observations of
the sample, calculated across the 10000 replications, and averaged over both symmetric ends.
The correlation graphs at other observations are skipped due to space limitation. The results
show that the filters give close result at points closer to the center of the sample. As the
estimation point approaches the end of the sample, filters become more asymmetric, and the
difference in their performance becomes more obvious. Thus, the asymmetric filters perform
roughly equally well at points that are at least about 3 years (for quarterly data) away from
the end of the sample. Otherwise, the asymmetric BK filter becomes increasingly superior to
the asymmetric CF filter for any cycle length and for any share of permanent component in
the input signal considered in the simulation. Thus, based on the results illustrated in Figure
??, it is recommended to use the asymmetric BK filter rather than the asymmetric CF filter
for the business-cycle frequency extraction in real time, i.e, at the very end of the sample.

As for the comparison of the true AR(2) process of the cycle, and the estimated AR(2)
regression coefficients, Table 2 shows that the length of the cycle extracted by the filters, when
the influence of the permanent component in the input series is sufficiently high, i.e., about
σε/ση > 5, is about constant, regardless of the true length of the cycle. This result shows the
potential limitation of the considered filters.

φ1 φ2 Fundamental period of the cycle (yrs)

true 1.2 -0.25 ≈ ∞
1.2 -0.35 	 8
1.2 -0.44 8.2
1.2 -0.5 3.5
1.2 -0.8 1.9

symmetric BK 1.699 -0.886 3.56
asymmetric BK 1.689 -0.884 3.48
asymmetric CF 1.696 -0.879 3.60
symmetric CF 1.623 -0.848 3.23

Table 2: The true AR(2) parameters and cycle length, and the estimated AR(2) parameters
and cycle length by the four filters, when the influence of the permanent component in the input
series is sufficiently high, i.e., about σε/ση > 5. In such case, the estimated AR(2) parameters
and the length of the extracted cycle are about constant, regardless of the true length of the
cycle.

246 volume 4 (2011), number 3



Aplimat - Journal of Applied Mathematics

Acknowledgement

This work has been supported by the European Social Fund within the project “Support for
the implementation of doctoral studies at Riga Technical University”. The author is thankful
to his supervisor Viktors Ajevskis for guidance. Remaining errors are the author’s own. The
opinions expressed in this paper are those of the author and do not necessarily reflect the views
of the Central Statistical Bureau of Latvia.

References

[1] AHAMADA, I., JOLIVALDT, P.: Classical vs wavelet-based filters Comparative study and
application to business cycle. Documents de travail du Centre d’Economie de la Sorbonne
10027, Universite Pantheon-Sorbonne (Paris 1), Centre d’Economie de la Sorbonne, 2010.

[2] BAXTER, M., KING, R. G.: Measuring business cycles: approximate band-pass filters
for economic time series. In The Review of Economics and Statistics, MIT Press, Vol.
81(4), pp. 575-593, 1999.

[3] BOX, G., JENKINS, G. M., REINSEL, G.: Time Series Analysis: Forecasting and Control,
3rd Edition, Prentice Hall, 1994.

[4] CAMPBELL, J. Y., PERRON, P.: Pitfalls and opportunities: what macroeconomists
should know about unit roots. NBER Technical Working Papers 0100, National Bureau
of Economic Research, Inc., 1991.

[5] CHRISTIANO, L. J., FITZGERALD, T. J.: The band pass filter. In International Eco-
nomic Review, Vol. 44(2), pp. 435-465, 2003.

[6] GUAY, A., ST-AMANT, P.: Do the Hodrick-Prescott and Baxter-King filters provide a
good approximation of business cycles?. In Annales d’Economie et de Statistique, issue 77,
2005.

[7] PRIESTLEY, M. B.: Spectral Analysis and Time Series, Academic Press, Inc., 1981.

[8] WATSON, M. W.: Univariate detrending methods with stochastic trends. In Journal of
Monetary Economy, Elsevier, Vol. 18, pp. 49-75, 1986.

Current address

Ginters Buss, MA
Department of Probability Theory and Mathematical Statistics,
Faculty of Computer Science and Information Technology,
Riga Technical University,
Meza iela 1k4, Riga, LV-1048, Latvia,
e-mail: ginters.buss@rtu.lv

or

Mathematical Support Division, Central Statistical Bureau of Latvia,
Lacplesa iela 1, Riga, LV-1301,
e-mail: ginters.buss@csb.gov.lv

volume 4 (2011), number 3 247



Aplimat - Journal of Applied Mathematics

Figure 3: Correlation at obs. 3 Figure 4: view at 3 from the top

Figure 5: Correlation at obs. 2 Figure 6: view at 5 from the top

Figure 7: Correlation at obs. 1 Figure 8: view at 7 from the top
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THE   M/G/ ∞   QUEUE   BUSY   PERIOD 
   DISTRIBUTION   EXPONENTIALITY 
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Abstract. Infinite servers queuing systems are often used to solve a large number of practical 
problems, namely in Engineering, Biology, Management, Finance and Sociology. The study of 
the M/G/∞ systems busy period is very important. Yet it is a very difficult task. This paper 
presents a service time distributions collection for which the length of the busy period is almost 
exponential. It is also shown that in heavy-traffic conditions, for a certain class of service time 
distributions, the length of the busy period of the M/G/∞ systems is approximately 
exponentially distributed. Thus, in all these cases, the study of this busy period is much simpler. 
It is also exemplified, with the power function and the Pareto service distributions, that it is 
possible to have in some particular situations an approximately exponential behaviour for the 
M/G/∞ queue busy period length. 
 
Key words. M / G / ∞ queue, busy period, exponential distribution, power function distribution, 
Pareto distribution. 
 
Mathematics Subject Classification: 60K35. 

 
 
1 Introduction 
 
The M / G / ∞ queue is a system where customers arrive according to a Poisson process at rate . 
Each customer receives a service which length is a positive random variable with mean  and 
distribution function , and . When a customer arrives its service starts at 
once (i.e., there are infinite servers) and it is independent both from the services of the other 
customers and from the arrival process. The quantity  is the traffic intensity. 
 
Infinite servers queuing systems are often used to solve a large number of practical problems, 
namely in Engineering, Biology, Management, Finance and Sociology. See, for instance, (Syski, 
1960, 1986), (Kleinrock, 1975), (Kelly, 1979), (Hershey, Weiss and Morris, 1981), (Carrillo, 1981), 
(Figueira and Ferreira, 1999) and (Ferreira, Andrade and Filipe, 2009). 
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In this paper some more results will be given about the busy period of the M / G / ∞ queue. 
 
For any queuing system, a busy period begins when a customer arrives at the system, finding it 
empty, ends, when a customer leaves the system, letting it empty, and in it there is always at least 
one customer present. So, in a queuing system, there is a sequence of idle and busy periods. 
 
The length of an idle period of a M / G / ∞ queue is a random variable, called , which distribution 
is exponential with parameter , as happens in any queue where the arrival process is Poisson. 
 
For the random variable , length of the busy period of the M / G / ∞ queue, the situation is not so 
simple. 
Tackács (1962) studied the busy cycle, a busy period followed by an idle period, for the M / G / ∞ 
queue. Its length is a random variable  and, evidently, . That author showed that  and   
are independent and deduced the expression for the Laplace-Stieltjes transform of . Using this 
expression and the fact that  and  are independent, (Stadje, 1985) deduced the expression  
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for the Laplace-Stieltjes transform of  and it is possible to show that 
 

 
  1e

E B





  (2) 

 

which is independent of the form of . This is not, however, valid for higher order moments. 
 
The inversion of (1) to obtain  tb , the probability density function of , is very hard to carry out. 
 
For a particular service distributions collections, see (Ferreira, 1998), it will be shown that it is easy 
to invert (1). And simple expressions for  related to the exponential distribution will be 
obtained. Then, it is deduced that for a large class of service distributions, since and   are great 
enough,  tb  is approximately exponential.  

 
Finally, service distributions cases for which does not occur necessarily 0)(lim 


tG


, as it happens 

with power function and Pareto ones, are studied in order to identify situations for which  has a 
similar behaviour. 
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2 The M/G/ ∞ Systems with Almost Exponential Busy Periods 
 
Lemma 1 
 
If 
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B is exponentially distributed at rate   e , with an atom at the origin which value is 

 e    

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. 

 
 
Demonstration 
Substituting (3) in (1) and inverting the consequent  sB , it is obtained the following probability 
density function: 
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(  is the Dirac function). 
 
 
Notes 
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- Note that for this distribution the Laplace-Stieltjes transform of Z  is  
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That is: Z  is exponentially distributed at rate  e  and so the points in time at which begin 
busy periods occur according to a Poisson process at rate  e . 
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the situation for Z  is not as simple as for 0 . It is easy to show, following the same 
procedures as in the precedent case that the probability density function of Z  is 
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3 Distributions of B when the Service Distribution is such that 0)(lim 

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

 

 
An example of a distribution for which 0)(lim 


tG


 is the exponential one. 

 
From (1), see for instance (Stadje, 1985) for the distribution function of B the following expression 
is obtained 
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where* is the operator convolution. 
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The Laplace-Stieltjes transform of the second member is  
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and, after its inversion, it is obtained  
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Lemma 2 
 
For service distributions verifying ,0)(lim 
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
 fixing  , for    and   great enough, B  is 

approximately exponentially distributed. 
 
 
In order to feel the meaning of    and    great enough, the coefficient of variation of B ,  BCV  
the coefficient of symmetry of B ,  B1 and the kurtosis of B ,  B2 , were computed for the  
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M/G1/ (service distribution given by (3) for 0 ), M/D/ (service distribution constant) and    

M/M/ (service distribution exponential) systems for 100 ,50 ,20 ,10 ,1 ,5.  with 1 (therefore 
  ). 

 
According to (Kendall and Stuart, 1979) 
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For an exponential distribution, 1CV , 42   and 92  . 
 
From Lemma 1 with 0 , to the M/G1/ queue 
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With 1n  (2) results from (8). 
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The expression (9) gives a recursive method to compute   ,...2,1, nBE n  as a function of 
    ,...2,1,0,0 nC n  

 
Making 1n   (2) results from (9) 
- For the  M/D/ system  
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and it is possible to compute any  nBE  exactly. 

- For the M/M/ system it is not possible to obtain expressions as simple as (11) to the 
   0nC . It is mandatory to compute numerically integrals with infinite limits and so 

approximations must be done. 
 

The results are: 
 

System 
ρ     

 

 
// 1GM  

 
// DM  

 
// MM  

 
.5 2.0206405 .40655883 1.1109224 
1 1.4710382 .56798436 1.1944614 
10 1.0000454 .99959129 1.1227334 
20 1.0000000 .99999999 1.0544722 
50 1.0000000 .99999999 1.0206393 
100 1.0000000 .99999999 1.0101547 

 

Table 1:  CV[B] 
 

 
 

System 
ρ     

 

 
// 1GM  

 
// DM  

 
// MM  

 
.5 9.5577742 6.0360869 5.0972761 
1 5.5867425 4.5899937 5.4821324 
10 4.0000000 4.0000000 4.1511831 
20 4.0000000 4.0000000 4.0326858 
50 4.0000000 4.0000000 4.0049427 
100 4.0000000 4.0000000 4.0012250 

 

Table 2:  γ1[B] 
 

 
System 

ρ 

 

 
// 1GM  

 
// DM  

 
// MM  

 
.5 15.983720 11.142336 10.454678 
1 10.878212 9.6137084 10.923071 
10 9.0000000 9.0000000 9.1617573 
20 9.0000000 9.0000000 9.0337903 
50 9.0000000 9.0000000 9.0550089 
100 9.0000000 9.0000000 9.0012250 

 

Table 3:  γ2[B] 
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The parameters studied assume values that are typical of an exponential distribution, after , 
for the M/G1/ and M/D/ queues. For the M/M/ system, only after 20 it can be said that 
those values are the ones of an exponential distribution. 
 
Finally note that the convolution of the exponentials with parameters   and  e  gives an 
approximate expression for  tZ , distribution function of Z , in the same condition of Lemma 2:   

   1
, 0

1

tt e

p

e e e
z t t

e

       
 

  (12). 

 
 

4 Power Function Service Distribution 
 
If the service distribution is a power function with parameter 0, CC  
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For this service time distribution, since   and C  are great enough, 
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Computing the Laplace-Stieltjes transform of (4) with this approximation it is obtained first 
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But, for   great enough, this is approximately 
s


 . So, from (4), assuming the Laplace-Stieltjes 

transform of  
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the conclusion is that   teetB
 1 . That is: 
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Lemma 3 
 
In an M/G/ queue where the service distribution is a power function, for   near 1, since   and 

  are great enough B  is approximately exponential with mean  


e
 . 

 
For this system the values of   B1  and  B2  were computed for 25. , .5 and .8 making, in 
each case,   take values from .5 till 100. The results are: 
 

  
25.  5.  8.  

γ1(B) γ2(B) γ1(B) γ2(B) γ1(B) γ2(B) 

.5 3.0181197 9.5577742 1.5035507 5.9040102 3.8933428 9.3287992 
1 4.4211164 9.1402097 2.7111584 7.4994861 3.9854257 9.0702715 

1.5 5.3090021 10.433228 3.3711526 8.2784408 3.9749455 8.9969919 
2 5.8206150 11.140255 3.7332541 8.6924656 3.9751952 8.9815770 

2.5 6.0803833 11.489308 3.9322871 8.9173048 3.9809445 8.9828631 
3 6.1786958 11.619970 4.0388433 9.0369125 3.9871351 8.9877124 
6 5.7006232 11.020248 4.0969263 9.1024430 3.9996462 3.9996459 
7 5.5034253 10.774653 4.0765395 9.0804332 3.9999342 8.9999341 
8 5.3382992 10.570298 4.0596336 9.0623268 3.9999992 8.9999992 
9 5.2037070 10.404722 4.0467687 9.0486468 4.0000086 9.0000086 
10 5.0944599 10.271061 4.0372385 9.0385796 4.0000068 9.0000068 
15 4.7702550 9.8790537 4.0152698 9.0156261 4.0000005 9.0000005 
20 4.6102777 9.6888601 4.0082556 9.0083980 4.0000000 9.0000000 
50 4.3045903  9.3338081 4.0012425 9.0012513 4.0000000 9.0000000 
100 4.1715617 9.1842790 4.0003047 9.0003057 4.0000000 9.0000000 

 

Table 4:  γ1(B)  and γ2(B) considering power function service distribution 
 
The analysis of the results shows a strong trend of γ1(B)  and γ2(B), to 4 and 9, respectively, after 

10  . This trend is faster the greatest is the value of   . 
 
 
5 Pareto Service Distribution 
 
Through this section only some examples will be presented. So consider a Pareto distributions such 
that 

   0,
,

,1

1
3



















 k
kt

t

k
kt

tG  (13) 

Then, k
2

3
  (see, for instance, (Murteira, 1979)). 
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The values calculated for γ1(B)  and γ2(B) with 1  and, so,    were 
 

   γ1(B)   γ2(B) 

.5 1028.5443 1373.4466 
1 1474.7159 1969.0197 
10 38.879220 54.896896 
20 4.0048588 9.0049233 
50 4.0000000 9.0000000 
100 4.0000000 9.0000000 

 

Table 5: γ1(B)  and γ2(B) considering the Pareto service distribution given by (13) 
 

and show a strong trend from γ1(B)  and γ2(B) to 4 and 9, respectively, after 20 . This is natural 
because, in this case, the convergence of   to infinite imposes the same behaviour to k . And so, 
after (13), it results   .0lim 


tG

  
 
But, considering now a Pareto distribution, such that 

   1        , 
4.

4.
4.,1

1 

















 


t
t

t

tG  (14), 

1

4.




   (See, again, Murteira, 1979) and the values got for γ1(B) and γ2(B) in the same 

conditions of the previous case are 
 

   γ1(B)  γ2(B) 

.5 10.993704 16.675733 
1 6.8553306 12.010791 
10 4.5112470 9.5724605 
20 4.4832270 9.5397410 
50 4.4669879 9.5208253 
100 4.4616718 9.5146406 

 

Table 6: γ1(B) and γ2(B) considering the Pareto service distribution given by (14) 
and do not go against the hypothesis of the existence of a trend from γ1(B) and γ2(B) to 4 and 9, 
respectively, although much slower than in the previous case. But, now, the convergence of   to 
infinite implies the convergence of   to 1. So 
 

 





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
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 4.
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1

4.,0
lim

t
t

t
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and it is not possible to guarantee at all that for   great enough   11  tG . 
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6 Conclusions 
 
The exponential distribution is very simple and quite useful from a practical point of view. It has 
been frequently used to study queuing systems. Among its various properties, it is remarkable its 
lack of memory, i.e.:    tTPyTytTP  , where T is an exponential random variable. 
 

The determination of  tb  is very fastidious for any kind of queuing system and not only for the 
M/G/ ∞ queue. 
 

Conditions under which B  is exponential or approximately exponential for the M/G/ ∞ queue were 
derived. 
 

Many quantities of interest in queues are insensible. This means that they depend on the service 
distribution only by its mean. Thus it is indifferent which service distribution is being considered. 
But using those given by (3), result quasi-exponential or exponential busy periods. And, for these 
service distributions, all distributions related to the busy cycle have simple forms and are related to 
the exponential distribution. 
 

In section 3, for a large class of distributions under conditions of heavy- traffic, it was proved that 
B  is approximately exponential irrespectively of the service distribution. 

 

But, for instance, if the service distribution is a power function, as it was seen, such conditions can 
not hold, at least in the same way. However, for    near 1 and   and   great enough, it is possible 
to guarantee that B  is approximately exponentially distributed. 
 

And in the case of the Pareto distribution, where   0tG  for   great enough does not necessary 
hold. Although it is not possible to give identical guarantees to those of the power function service, 
the results got for γ1(B) and γ2(B) are not against that, for   great enough, B  is approximately 
exponentially distributed. 
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EXPLORING THE REGIONAL CZECH
HOUSEHOLD INCOME DYNAMICS

VIA REGRESSION MIXTURES

FORBELSKÁ Marie, (CZ)

Abstract. Model–based cluster analysis is popular methods for grouping observations
into unobserved segments. The article deals with cluster analysis of household income
dynamics based on the results of statistical survey EU SILC 2005–2008. In this paper
we address the problem of clustering sets of trajectory data generated by households
in different regions. The focus is to model curve data directly using a set of model–based
curve clustering algorithms referred to as mixtures of regressions or regression mixtures.
The R environment (R Development Core Team, 2010) is used for mixture model analysis.

Keywords. clustering, mixtures of regressions, generalised linear model, linear mixed
models, household income, EU SILC.
Mathematics Subject Classification. Primary 62H30; Secondary 30C40.

1 Introduction

The EU-SILC (European Union Statistics on Income and Living Conditions) is an instrument
aiming at collecting timely and comparable cross-sectional and longitudinal multidimensional
microdata on income, poverty, social exclusion and living conditions. This instrument is an-
chored in the European Statistical System (ESS). For the first time this investigation was
carried out by the Czech Statistical Office in 2005 under the name Living Conditions 2005.

Investigation is carried out by the so-called rotating panel, where the same households were
re-interviewed in the annual intervals for four years. After this time are replaced by other
households living in the newly visited homes that are added to the investigation file conti-
nuously by the random selection. Longer monitoring of a household permits building image
of their social situation, not only in the year, but also the changes and developments over time.
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The analysis has been carried out on household income, adjusted for different household
types using an equivalence scale. Personal equivalised income is obtained by dividing the total
household disposable income by the equivalised size of the household, using modified OECD
scale: 1 for the first person aged 14 or more; 0.5 for any subsequent person aged 14 or more;
and 0.3 for persons aged less then 14.

2 Methods

Modelling clustered and longitudinal data with and without nested factors has gained im-
portance in recent years. Early expositions are the books by Searle, Casella, and McCulloch
(1992), Verbeke and Molenberghs (2001) and McCulloch and Searle (2001), which deal primarily
with linear mixed models (LMM s). Hierarchical linear model (HLM ) or multi-level formulations
are discussed in Raudenbush and Bryk (2001), which can be rewritten as LMM s. Extensions
to generalized LMM (GLMM ) are considered in Molenberghs and Verbeke (2005), Fitzmaurice,
Laird and Ware (2004) and an up-to-date mathematical treatment is given by Jiang (2007).
A Bayesian perspective of HLM s is taken in Gelman and Hill (2006).

2.1 Linear Mixed Models (LMM s)

Linear mixed models extend classical linear models by incorporating random effects in the
structure. Assume that the data set at hand consists of N subjects (here households). Let ni

denote the number of observations for the ith subject. Yi is the ni × 1 vector of observations
for the ith household (1 ≤ i ≤ N). The general linear mixed model is specified as

Yi = Xiβ + Zibi + εi i = 1, . . . , N. (1)

β (p×1) gives the p fixed-effects parameters. These are fixed, but unknown, regression parame-
ters, common to all subjects. bi (q×1) is the vector with the random effects for the ith subject
in the data set. The use of random effects reflects the belief that there is heterogeneity among
subjects for a subset of the regression coefficients in β. Xi (ni×p) and Zi (ni×q) are the design
matrices for the p fixed and q random effects, and εi (ni × 1) contains the residual components
for subject i. Independence between subjects is assumed. Here bi and εi also are assumed to be
independent, and we follow the traditional assumption that they are normally distributed with
mean vector 0 and covariance matrices, say, D (q × q) and Σi (ni × ni), respectively. Different
structures for these covariance matrices are possible; an overview of some frequently used ones
can be found in Verbeke and Molenberghs (2001). It is easy to see that Yi then has a marginal
normal distribution with mean Xiβ and covariance matrix Vi = V ar(Yi), given by

Vi = ZiDZ′
i + Σi. (2)

In this interpretation it becomes clear that the fixed effects enter only the mean EYi, whereas
the inclusion of subject–specific effects specifies the structure of the covariance between obser-
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vations on the same unit. Under the traditional normality assumptions,

Yi|bi ∼ N(Xiβ + Zibi,Σi),

bi ∼ N(O,D), (3)

it becomes clear that the residual terms model variability within a subject.
Denote the unknown parameters in the covariance matrix Vi with ψ. Conditional on ψ,

a closed–form expression for the maximum likelihood estimator of β exists, namely,

β̂ =

(
N∑

i=1

X′
iV

−1
i Xi

)−1 N∑
i=1

X′
iV

−1
i Yi. (4)

Conditional on ψ, this is the Best Linear Unbiased Estimator (BLUE ) for β, where best is
in the sense of minimum mean squared error. To predict the random effects, the mean of the
posterior distribution of the random effects given the data, bi|Yi, is used. Conditional on ψ,
we have

b̂i = DZ′
iV

−1
i (Yi − Xiβ), (5)

which can be proven to be the Best Linear Unbiased Predictor (BLUP) of bi (where best is
again in the sense of minimum mean squared error). Estimation of ψ is mostly performed by
maximum likelihood (ML) or restricted maximum likelihood (REML). The expression maxi-
mized by the ML (l1), respectively REML (l2), estimates is given by

l1(ψ;y1, . . . ,yN) = c1 − 1
2

N∑
i=1

log(|Vi|) − 1
2

N∑
i=1

r′iV
−1
i ri, (6)

l2(ψ;y1, . . . ,yN) = c2 − 1
2

N∑
i=1

log(|Vi|) − 1
2

N∑
i=1

r′iV
−1
i ri − 1

2

N∑
i=1

log(|X′
iV

−1
i Xi|), (7)

where ri = yi − X′
i(
∑N

i=1 X′
iV

−1
i Xi)

−1(
∑N

i=1 X′
iV

−1
i yi)

−1 and c1, c2 are appropriate constants.
Equations (6) and (7) are maximized using iterative numerical techniques such as Fisher sco-
ring or Newton–Raphson (for full details, see Demidenko, 2004). In equations (4) and (5)

the unknown ψ is then replaced with ψ̂ML or ψ̂REML, leading to the empirical BLUE for β
and the empirical BLUP for bi. For inference regarding the fixed and random effects and the
variance components, appropriate likelihood ratio and Wald tests are explained in Verbeke and
Molenberghs (2000).

The predictor for the conditional expectation E(Yi|bi) = μi|bi
= Xiβ + Zibi is obtained

from equation (4) and (5), namely,

μ̂i|bi
= Xiβ̂ + Zib̂i = Xiβ̂ + ZiDZ′

iV
−1
i (Yi − Xiβ̂)

= (Ini
− ZiDZ′

iV
−1
i ) + ZiDZ′

iV
−1
i Yi = ΣiV

−1
i Xiβ̂ + (Ini

− ΣiV
−1
i Xi)Yi.

Note that this expression is a weighted average of Xiβ̂ (related to the whole population) and
Yi (related to subject i).
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2.2 Generalized Linear Mixed Models (GLMM s)

Generalized linear models (GLM s) are, as the name suggests, a generalization or extension
of normal linear model. GLM s incorporate normal linear models as a special case, but also
cater for other error distributions (binomial, Poisson, negative binomial, or gamma distribu-
tion). Nelder and Wedderburn (1972) were the first to propose the generalized linear model
to encompass these different models under one unified mathematical framework.

The generalized linear mixed model (GLMM ) (see McCullagh and Nelder, 1989) consists
of three parts: a link function, a linear predictor, and a distributional model.

Given bi, the variables Yi = (Yi1, . . . , Yini
)′ are mutually independent with a density func-

tion (from the exponential family of distribution) given by

f(yij|bi,β) = exp

{
yijθij − a(θij)

dij(φ)
+ c(yij, φ)

}
(8)

where θij is the canonical parameter and φ is the scale parameter. The functions dij and c are
specific to each distribution.

The conditional mean and the conditional variance of Yij are given by

E(Yij|bi) = μij|bi
= g−1(ηij) = g−1(x′

ijβ + z′ijbi) (9)

V ar(Yij|bi) = v(μij|bi
)dij(φ) (10)

where g and v are, respectively, the link and the variance function, xij and zij are the j-th row
of the matrix Xi and Zi, respectively.

The random effects b1, . . . ,bN , are mutually independent with a common underlying dis-
tribution G which depends on the unknown parameter ψ. Next the vector of random effects
bi is assumed to follow a multivariate normal distribution with mean vector 0 and covariance
matrix D.

2.3 Finite Mixtures of Regression Models

For a mixture of K component distributions of GLMM s in proportions π1, . . . , πK

(
∑K

k=1 πk = 1), we have that the conditional density of the response variable Yi = (Yi1, . . . , Yini
)′

(i = 1, . . . , N) given fixed and random covariates Xi and Zi is modeled by

f(yi|Xi,Zi,Ψi) =
K∑

k=1

πkfk(yi|Xi,Zi,ηi,k), (11)

with the vector ηi,k = (ηi1,k, . . . , ηini,k)
′ of linear predictors ηij,k = g(μij,k|bi,k

) = x′
iβk +z′ibi,k

and vectors of unknown parameters Ψi = (π1, . . . , πK−1,η
′
i,1, . . . ,η

′
i,K)′ (i = 1, . . . , N).

The log likelihood is given by log L(Ψ) =
∑N

i=1 log
{∑K

k=1 πkfk(yi|Xi,Zi,ηi,k)
}

and the

parameter vector Ψ = (π1, . . . , πK−1,η
′
1,1, . . . ,η

′
N,K)′ can be estimated by maximum likelihood
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(ML) and can be obtained via the Expectation–Maximization (EM ) algorithm of Dempster et
al. (1977).

Using an estimate of the vector of all unknown parameters Ψ, this approach gives a proba-
bilistic clustering of (Yi|Xi,Zi) into K clusters in terms of estimates of the posterior probabi-
lities of component membership

ωk(yi|Xi,Zi) =
pkfk(yi|Xi,Zi,ηi,k)

f(yi|Xi,Zi,Ψi)
, (12)

where ωk(yi|Xi,Zi) is the posterior probability that (yi|Xi,Zi) belongs to the kth component
of the mixture (i = 1, . . . , N, k = 1, . . . , K). In the Bayesian framework, we use the rule which
assigns observation (yi|Xi,Zi) to the class for which it has the highest posterior probability.

In practice, the number of components K is unknown and can be chosen as that which
minimizes some criterion, e.g. Bayesian Information Criterion BIC of Schwarz (1978), see also
McLachlan and Peel (2000).

3 Model Based Clustering of Household Incomes Over Years 2005–2008

Clustering is typically used as a tool for understanding and exploring large data sets. Finite
mixture models are commonly used as a basis for cluster analysis.

EU-SILC will gather comparative statistics on income distribution and social exclusion
from the 25 EU members states, Norway and Iceland. EU-SILC data are highly complex and
contain detailed information on the income of the sampled individuals and households. More
information on EU-SILC can be found in Eurostat (2004).

EU-SILC will provide two types of annual data:

• Cross-sectional data pertaining to a given time or a certain time period with variables
on income, poverty, social exclusion and other living conditions, and

• Longitudinal data pertaining to individual-level changes over time, observed periodically
over a four years period.

3.1 Poverty Across Czech NUTS3 Regions

The standard poverty rate used in this section (60% of the national median equivalised dispo-
sable income) is a relative definition as it depends on the average income of the country. The
national average at-risk-of-poverty rate, however, masks important differences within a country,
including regional differences (see Table 1 and Figure 1).

The division of NUTS3 regions into sub–groups based on percentage of households below
the poverty line, we used the following mixture of binomial logit regressions

f(yi,year|ni,year, year,Ψ) =
K∑

k=1

πkBi(yi,year|ni,year, year, ηi,year,k)

volume 4 (2011), number 3 265



Aplimat - Journal of Applied Mathematics

year.2005 year.2006

year.2007 year.2008

5

10

15

20

Figure 1: At-risk-of-poverty rates across Czech NUTS3 regions (in %)

Table 1: Regional poverty rates (in %) - Source: own calculations based on EU-SILC 2005–2008
Region 11 21 31 32 41 42 51 52 53 61 62 71 72 81 CZ
2005 3.4 9.2 5.1 5.8 10.1 16 7.1 6.4 12.1 5.2 9 15 7.4 15 9.4
2006 4.9 9.3 6.5 5.1 13.2 16 6.6 3.7 4.9 7.2 9 17 6.4 15 9.3
2007 2.2 9.7 5.8 4.3 9.8 15 6.9 4.8 5.0 3.6 10 19 8.5 14 8.9
2008 4.0 10.6 8.4 2.6 7.1 15 8.2 6.7 8.1 4.3 12 12 10.4 14 9.3

where yi,year is the at-risk-of-poverty rate of i-th region (i = 1, . . . , 14), ni,year is the num-
ber of households of i-th region and year = 2005, . . . , 2008 (categorial variable). In order to
determine the suitable number of components K, the mixture is fitted with different numbers
of components and the BIC information criterion is used to select an appropriate model. In this
case a model with three components is selected. The fitted values for the model with three
components are given in Figure 2, Figure 3 and Table 3. Calculations were performed using
the package flexmix (Gruen and Leisch, 2007 a 2008).

3.2 Clustering of Regional Household Income Dynamics

Finally, we applied finite mixture model of linear mixed models on each NUTS3 region sepa-
rately. The data is illustrated in the Figures 4, 5, 6 and the model is given by

f(yi,region|year, region,Ψ) =
K∑

k=1

πkN(yi,region|μi,region, year, βk,region,bi,region)

with

μi,region =

⎛
⎜⎝

1 t1
...

...
1 t4

⎞
⎟⎠

(
β0,region

β1,region

)
+

⎛
⎜⎝

1 t1
...

...
1 t4

⎞
⎟⎠

(
b0,region

b1,region

)
,
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Figure 2: At-risk-of-poverty rate and classification of NUTS3 regions into three components. The
regions are sorted by the mean poverty rates over years 2005–2008.

Figure 3: Classification of NUTS3 regions into
three clusters: ”rich” (light grey), ”middle” (grey),
”poor” (black)

Table 2: Estimated proportions
Comp.1 Comp.2 Comp.3

πk 0.357 0.429 0.214

Table 3: Czech NUTS3 regions
Region Region

11 Prague 52 Hradec Králové
21 Central Bohemia 53 Pardubice
31 South Bohemia 61 Vysočina
32 Plzeň 62 South Moravia
41 Karlovy Vary 71 Olomouc
42 Ust́ı nad Labem 72 Zĺın
51 Liberec 81 Moravia-Silesia

where the vector (t1, . . . , t4)
′ contains the centered years and i denotes the i-th household within

the region. We used the mclust package over all data for initial solution and flexmix package
for each region. The number of components was again determined on the basis of BIC criteria.
In this case a model with four component was selected. Results are plotted for different regions
in the Figures 4, 5, 6.

As shown in Figures 4, 5, 6, the first three components contain almost all equalised income.
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The fourth component only comprises between 0 and 8.2% of households. Using regression
mixture, the BIC criterion divides households into four income categories: households with low
income, average income, higher income and with extremely high income.

The relationship between household income categories and types of regions is described
in Table 4. Type of region is mainly characterized by the percentage of households in the third
income category.

Table 4: Percent range of households in each component for three types of regions
Regions Comp.1 Comp.2 Comp.3 Comp.4
”rich” 14.2–33.3% 33–56.7% 25.4–42.3% 0–8.2%

”middle” 21–34.5% 49.1–58.9% 8.3–23.4% 2.6–6.6%
”poor” 23.9%–29.5% 55.1–63.9% 6.6–14.2% 1.1–1.2%
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Figure 4: Clustering trajectories of equivalised household income for the ”rich” regions into four
components. Solid line is straight line with fixed parameters.

268 volume 4 (2011), number 3



Aplimat - Journal of Applied Mathematics

year

E
qu

iv
al

is
ed

 h
ou

se
ho

ld
 in

co
m

e

0

500000

1000000

1500000

28.1%

Comp.1
Region 51

20
05

20
06

20
07

20
08

53.4%

Comp.2
Region 51

13.6%

Comp.3
Region 51

20
05

20
06

20
07

20
08

4.9%

Comp.4
Region 51

24.5%

Comp.1
Region 53

20
05

20
06

20
07

20
08

57.1%

Comp.2
Region 53

15.5%

Comp.3
Region 53

20
05

20
06

20
07

20
08

2.9%

Comp.4
Region 53

34.5%

Comp.1
Region 72

50.5%

Comp.2
Region 72

8.3%

Comp.3
Region 72

6.6%

Comp.4
Region 72

25.9%

Comp.1
Region 21

58.9%

Comp.2
Region 21

12.7%

Comp.3
Region 21

0

500000

1000000

1500000

2.5%

Comp.4
Region 21

0

500000

1000000

1500000

20
05

20
06

20
07

20
08

21%

Comp.1
Region 41

51.5%

Comp.2
Region 41

20
05

20
06

20
07

20
08

23.4%

Comp.3
Region 41

4%

Comp.4
Region 41

20
05

20
06

20
07

20
08

31.2%

Comp.1
Region 62

49.1%

Comp.2
Region 62

20
05

20
06

20
07

20
08

17.1%

Comp.3
Region 62

2.6%

Comp.4
Region 62

Figure 5: Clustering trajectories of equivalised household income for the ”middle” regions into four
components. Solid line is straight line with fixed parameters.

4 Conclusions

This paper introduces the use of regression mixture models in exploring household income dy-
namics over short time period. Within the regression mixture approach, classification of regions
based on the risk of monetary poverty was also carried out.
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Kotlářská 2, Brno, 611 37, Czech Republic,
tel.: +420 549 493 811
email: forbel@math.muni.cz

volume 4 (2011), number 3 271



Aplimat - Journal of Applied Mathematics

272 volume 4 (2011), number 3



 

 

 
LFLF   FORECASTER   AS   NEW   TOOL 

   FOR   TIME   SERIES PREDICTION 
 

HABIBALLA, Hashim,  (CZ),   PAVLISKA, Viktor, (CZ),   DVOŘÁK, Antonín (CZ)  
 
 

Abstract. The article describes software tool for prediction of time series based on various 
methods derived from F-transformation and linguistic rules. The tool has been created on 
Institute for Research and Applications of Fuzzy Modeling, University of Ostrava. It is 
developing into a really powerful application giving good results in some cases. 
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1. Introduction 
 

Time series analysis and prediction is an important task that can be used in many areas of 
practice. The task of getting the best prediction to given series may bring interesting engineering 
applications in wide number of areas like economics, geography or industry. Solution to the 
problem of obtaining best results in prediction of time series can be based on well-known and 
simple methods like Winters or Linear method [2]. In this paper we present a tool based on two 
methods originally developed by members of Institute for Research and Applications of Fuzzy 
Modeling. The aim of the paper is not to present the details of the methods already published, but to 
present a tool implementing them. The first method is based on the notion of F-transform devised 
by the group of Prof. Perfilieva [3]. The second approach use the linguistic rules utilizing fuzzy 
logic and deduction that is a well-known formalism with very good results in variety of practical 
applications like industrial ones. 
 
 
2. F-transform  
 
The core idea of the F-transform technique is a fuzzy partition of the universe. It can be simply 
presented like set of intervals fulfilling some criteria. It is described in the following definition that 
is stated in [4]. 
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These partitions form a base for F-transform which lead to the tuple of numbers representing 
original transformated function. The n-tuple can be obtained using the following notion. 

 

 
To forecast a time series we will use its F-transform representation and separately forecast the next 
component Yn+1 of the F-transform(of yt) and a respective residuum. We will consider three 
methods for the forecasting a component of the F-transform: the F-transform of the second order an 
extrapolation of the inverse fuzzy transform and a logical deduction [1]. 
 
 
3. Linguistic rules 
 

The theory of linguistic term and variables is well-known approach in the fuzzy logic community. It 
enables to work with rules containing terms of natural language like small or big and modifiers like 
very, roughly etc. The rule interpretation is then done by logical deduction based on which is based 
on fuzzy set theory and fuzzy logic to enable to deduce conclusions on the basis of imprecise 
description of the given situation using the linguistically formulated fuzzy IF-THEN rules [1].  

The usage of this theory within a frame of time series prediction lies in the learning of these rules 
from the serie and then application to future (predicted) members of the serie. These learning 
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algorithms are already prepared within the LFLC software [1], which is intended to perform logical 
deduction on linguistic rules. The core of the system serve also for the presented application. 

 

 

 
 
4. Time series tool 
 
The software for prediction of time series based on the previously presented formalisms is currently 
in the development, but first alpha version is now complete. It was implemented on MS-Windows 
platform in C++ using free GUI library WxWidgets. The predecessor of the tool has been an 
console application without GUI, but shares the same core like the tool.  
 
The main tasks of the tool are the following: 
 

- Loading and presentation of a prepared file with a time serie in a graph. 
- Setting up the methods and parameters for prediction. 
- Computation of prediction according to the methods. 
- Presentation and selection of predictions in a graph with reports generated during prediction 

(difference to the original serie etc.) 
- Export of selected results. 

 
The application is an SDI (single document interface) application divided into two main windows – 
Plot and Methods (Fig. 1). Plot window allows opening of user chosen serie through standard file 
open dialog (File menu). Then it performs desired predictions on loaded serie and presents it in a 
graph. The graph window contains two basic panels – graphical information panel and text 
information panel. Graphical information panel enables to present standard graph of the serie and 
predictions, it can be zoomed (important method is to fit the curve into graph which is connected to 
‘s’ key). Some basic graph operations can be obtained by Plot menu. Last menu item - Help - shows 
the application info and basics of application control (Fig.2).  
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Text information panel describes performed predictions projected in graphical information panel. It 
presents information concerning particular prediction in one line (color refers to the same color in 
graph). The information given could be presented on the following simple example: 
 

No.4 Predictor, name: AvgTrend[k=5] {IntRule[v=9]}, error:0.0105458 
It divides into predictor number, prediction description (methods used) – Trend (k = seasons 
number included for prediction), {method [specification]}, error of prediction. For our example it 
means: 
4-th best prediction, trend is computed from average,[ number of seasons included = 5]{logical 
deduction was used with [variable number = 9]}. 
 

 
Fig. 1:Time series tool layout 

 
Methods window (Fig. 3) enables to set up the details for prediction process. It consists of four 
basic parts: 
 

1. Trend computation selection. 
2. Method computation selection. 
3. Season part computation selection. 
4. Operations with application – computation of prediction, export of the selected curve, export 

of all curves into file representation. 
 
Trend could be selected either to be computed via standard average method or via inverse F-
transform. There are basically four possibilities how to predict serie – standard Linear or standard  
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Fig. 2: Plot window 

 

 
Fig. 3: Methods window 
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Winters method or new method of logical deduction or second order F-transform.  Season 
computation can be additionally set up for season’s dependency. 
 
The input file with a serie should conform to a simple format, which could be observed from the 
following example: 
 
NN3_101 4998 4480 4824 4814 4602 4499 4594 4600 4507 4606 4503
 4801 4564 4142 4818 4408 4496 4587 4656 4799 4652 4638 4650  
 
First item should be name of the serie followed by unlimited number of real numbers delimited by a 
blank space (TAB, space, etc.). 
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5 Conclusion  
 
The presented application is currently in initial stage of usage and experimentation. We believe it 
may bring interesting results in comparison with standard methods. Initial experiments show mainly 
promising values for logical deduction. Application will be soon deployed in its demo version and 
also there will be additions to the core of methods utilized. We present one of the applications of 
LFLForecaster in the following image. 
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Abstract. The paper offers an analysis of monthly average temperature and precipitation sum 
time series recorded at 44 measurement stations in the Czech Republic over the period of 1961–
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1 Introduction 
 
The time series analysed in this paper are represented by monthly time series of average 
temperatures (in degrees Celsius) and precipitation amounts (in millimetres) taken from 44 
measurement stations in the Czech Republic (i.e. 88 time series altogether) in the period between 
1961 and 2008. The detailed description of measurement stations location can be found in [3]. The 
elevation of the selected measurement stations ranges from 158 metres above sea level (Doksany 
station) to 1322 metres above sea level (Lysá hora station). The southernmost station is that of 
Lednice (48°47'34''), the northernmost station is Bedřichov (50°48'54''). The Czech Republic “far 
west” region is represented by the station in the town of Aš (12°10'47'') and the easternmost station 
is located at Lysá hora (18°26'52''). The input data were gained from the database of the Czech 
Hydrometeorological Institute CLIDATA. Other valuable information about this rich source of data 
as well as additional references to resources in English can be found e.g. in [4]. The location of the 
chosen measurement stations can be seen in Fig. 1 below. 
 The use of particular statistical tools derived from the so-called “Box-Jenkins methodology” 
in the climate and meteorological science is not common in the Czech Republic. SARIMA models 
were constructed, for instance, in [8], where the SARIMA(1,1,1)x(0,1,1)12 model was identified for 
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monthly average temperatures from Čáslav measurement station for the period 1876–1996. For time 
series of average year temperatures taken at Praha-Klementinum measurement station, model AR(9) 
in [5] was found. 
 When analysing the global warming phenomenon in [12], models with the term AR(9) were 
also constructed. The authors were working with global average yearly temperature time series and 
constructed ARIMA(9,1,0) and ARIMA(9,1,2) models. 

A wider and more relevant use of SARIMA models can be traced in the field of hydrology 
and water management. (Perhaps the most important issue is the drought analysis. In work [1], 
where monthly streamflow data from an Ethiopian river were analysed, the 
SARIMA(0,1,1)x(0,1,1)12 model outperformed other models when capturing the severity of drought 
in the area. The same issue, having used data from Iran, was dealt with in work [9].) 

Moving from climatology and meteorology to environmental science, a lot of works using 
models derived from Box-Jenkins methodology can be found. (From recent publications we can 
mention, for instance, [10] and [6], where the authors constructed SARIMA models for fractions of 
the atmospheric Particulate Matter (PM) concentrations in Brazil. As an example of inventive 
application of SARIMA models, see work [11], where quarterly data about container transshipment 
at German ports were examined.) 

 

Figure 1. The location of the selected measurement stations in the Czech Republic territory 

 
 
2 SARIMA models theory 
 
In general, in a serial correlation theory, we will deal with specifications of the form 
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where xt is a vector of explanatory variables observed at time t, zt-1 is a vector of variables known in 
the previous period,  and  are vectors of parameters, ut is a disturbance term and t innovation in 
disturbance. Vector zt-1 may contain lagged values of u or those of  or both. If there are no 
explanatory variables involved in the model, it is possible to replace ut with yt in the equations 
below. 

The above mentioned Box-Jenkins methodology, or ARIMA models theory, is developed in 
work [2]. ARIMA (autoregressive integrated moving average) models are generalizations of a 
simple AR model that uses three tools for modelling serial correlation in disturbance. The first tool 
is an autoregressive, or AR term. Each AR term corresponds to the use of a lagged value of the 
residual in a forecasting equation for the unconditional residual. The autoregressive model of order 
p, AR(p) has the following form: 
 

 1 1 2 2 ...t p t p tt tu u u u          (2) 
 

or, alternatively, with the use of a lag operator B: 
 

 2
1 2(1 ... ) ( )p

p t p t tB B B u B u          , (3) 
 

where for B holds 
 

 j
t t jB u u  . (4) 

 

The next tool is an integration order term. Each integration order corresponds to the differentiation 
of the series being forecast. The first-order integrated component means that the forecasting model 
is designed for the first difference of the original series. The second-order component corresponds 
to the second difference, etc. The third tool is MA, or a moving average term. The moving average 
forecasting model uses lagged values of a forecast error to improve the current forecast. The first-
order moving average term uses the most recent forecast error, the second-order term uses the 
forecast error from two most recent periods, etc. MA(q) has the form: 
 

 1 1 ...t t q t qtu          . (5) 
 

Equivalently, it can be rewritten by the lag operator as follows: 
 

 1(1 ... ) ( )q
t q t q tu B B B         . (6) 

 

When modelling time series with systematic seasonal movements – which is the case of 
monthly average temperatures and monthly precipitation sums – Box and Jenkins in [2] 
recommended the use of seasonal autoregressive (SAR) and seasonal moving average (SMA) terms. 
The seasonal autoregressive model of order P can be written as 
 

 1 2 2 ...t tPt S t S t SPu u u u         (7) 
 

or 
 

 ( )S
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The seasonal moving average model of order Q can be as written as 
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or, equivalently, 
 

 ( )S
t tQu B  . (10) 

 

In all the four equations above, S denotes the length of seasonality, which is for the time series 
analysed in this paper equal to number 12. 

Finally, we can write the most general SARIMA(p,d,q)(P,D,Q)S -with-constant model as 
 

 0( ) ( )(1 ) (1 ) ( ) ( )S d S D S
p t q tP QB B B B u B B         , (11) 

 

where the constant equals 
 

 0 1 2 1 2[(1 ... )(1 ... )]p p             . (12) 
 

 
 
3 Model construction procedure, quick walkthrough 
 
Monthly average temperature time series in the period 1961–2008 really show an increasing linear 
trend and seasonality with the length equal to 12, so we can start modelling by using seasonal 
differentiation where D = 1. Further, as the main tool, we use mainly the (residual) correlogram 
visual analysis method. In the correlogram, the values of the (residual) autocorrelation function 
(AC), partial autocorrelation function (PAC) and Ljung-Box Q-statistics values can be seen. An 
example of possible software output is presented in Fig. 2. 
 

 
 

Figure 2. AC and PAC of seasonally differentiated monthly average time series, H2USTI01 measurement station 
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Ljung-Box test publicized in [7] uses a test statistic in the form 
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where T is the number of observations, j is the sample autocorrelation in lag j and k is the number 
of lags to be tested. Q-statistic (13) in lag k is the test statistic for the null hypothesis about zero 
autocorrelation up to lag k. Q has the asymptotic chi-square distribution with degrees of freedom 
equal to k reduced by the number of MA and AR terms employed in the model.  

As can be seen in Fig. 2, most statistically significant are the values of AC and PAC in lag 
12 and the value of PAC in lag 24. So the next step is the employment of the SMA(12) term. Or 
alternatively, Q = 1 and S = 12 in the equation (10) term. Now we can speak about the 
SARIMA(0,0,0)x(0,1,1)12 model. In the next step – according to the residual correlogram – some 
term for the lag 1 should be added to the model. Two types of criteria were used: 

1) primary: statistical significance of the estimated coefficient on the 5% level considered 
according to the t-test 

2) secondary: maximization of the adjusted coefficient of determination and/or minimization of 
the Akaike information criterion. 

Secondary criterions were used when there was no possibility to decide after a primary criterion had 
been used, or when it was necessary to decide which term was the best one to be added to the model 
in a certain phase. 
 
 
4 Results and discussion 
 
4.1 Monthly average temperatures 
 
First, let us have a look at the results for SARIMA models of monthly average temperature time 
series. Table 1 contains the summary of estimated parameters for all 44 measurement stations sorted 
out from the lowest to highest elevation. In the first column there is an identification symbol for 
each measurement station. In the second column can be found a model that meets the requirement 
of non-significant Q-statistics for both all the lags investigated and coefficients estimated as 
significant on the 5% significance level in both cases. This model is then rewritten in the third 
column. In the last (fourth) column, there is a list of other terms that can be transposed to the model 
on the 5% significance level. If there were only one or two terms respectively, the values of 
estimated coefficients can be found in the table as well. In Fig. 3, the data presented in Table 1 can 
be shown in a different way: a percentage of AR and MA terms (except for lags 1 and 12) employed 
in SARIMA models of monthly average temperatures according to a particular lag is noticeable. 

As can be seen from Table 1, the “base” of SARIMA models was the same for all the models 
constructed for monthly average temperature time series in the period 1961–2008; 
SARIMA(1,0,0)x(0,1,1)12-with-constant. When pursuing the goal of non-significant Q-statistics for 
all lags, in approximately one quarter of measurement stations the employment of terms with lag 2 
or 3 was necessary. 

A somewhat unexpected result is the possibility of the employment (at 5% significance 
level) of terms with lag 13 in the models for all the measurement stations except the Klatovy 
station. In most cases it is the MA(13) term. In the same way, for two-thirds of measurement 
stations the use of terms with lag 26 is possible. 

 



 
 
 

Aplimat – Journal of Applied Mathematics

 

   volume 4 (2011), number3
 
 

286

Table 1. SARIMA models for monthly average temperature time series, measurement stations 
 from the lowest to highest elevation 
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Figure 3. Percentage of AR and MA terms (except for lags 1 and 12) employment in SARIMA models of monthly 
average temperatures recorded at 44 measurement stations, according to the lag, 

 
In all 44 models, however, SMA(12) and AR(1) terms are employed, so we can use “their” 

coefficients 1 and  (to be found in the second and third column of Table 1) to examine whether 
the relation between the estimated model and elevation or geographical location really exists. The 
results of this part of the analysis can be seen in Fig. 4 and 5. In the case of longitude it is obvious 
according to Fig. 4 that the estimated values of the 1 coefficient (blue colour) are mostly 
independent of the measurement stations´ longitude; only between 12° and 17° there is a certain 
parabolic dependence. With the exception of the easternmost measurement station Lysá hora (the 
highest located station with its elevation of 1322 meters above sea level) we can state that the 
values of the estimated coefficient  (red colour) tend to be higher for higher longitudes than for 
lower latitudes on average. In other words, the dependence of monthly average temperatures on the 
previous month value is on average higher at the stations located in the east of the Czech Republic 
than at those in the west. 

But on the other hand – based on the measurement stations´ latitude – the following 
conclusions can be drawn. The estimated coefficients’ values oscillate around a constant and the 
analysis shows the mutual independence of their values and the measurement stations´ latitude. 

Fig. 5 shows the relation between the estimated SARIMA models’ coefficients (as can be 
seen in the second and third column in Table 1) and the elevation of particular measurement 
stations. As can be seen in Fig. 5, while the estimated values of the 1 coefficient (triangles) are 
independent of the measurement station elevation, the values of the coefficient  (points) tend to 
decrease with increasing measurement station elevation. This means that monthly average 
temperatures at the measurement stations with lower elevation are more dependent on the previous 
months´ average temperatures than those recorded at the measurement stations with higher 
elevations. 
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Figure 4. The values of estimated AR(1) and SMA(12) coefficients in SARIMA models of monthly average temperature 
time series according to the longitude of measurement stations 
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Figure 5. The values of estimated AR(1) and SMA(12) coefficients in SARIMA models of monthly average temperature 
time series according to measurement station elevation 

 
 
4.2 Monthly precipitation sums 
 
There are two reasons why modelling of monthly precipitation sum time series started by seasonal 
differentiation. Firstly, other procedures, e.g. the SARIMA(0,0,0)x(1,0,1)12 model, have led to a 
distinctively lower adjusted coefficient of determination (higher Akaike’s information criterion) and 
secondly, seasonal differentiation allows a better comparison between the models for temperature 
and precipitation time series. 

The same analysis as in the case of the temperature time series was also performed for the 
precipitation time series. A common “base” of SARIMA models for all the measurement stations in 
the latter case was the SARIMA(0,0,0)x(0,1,1)12 model. Further – in contrast with the models for 
the temperature time series – there are considerable differences between SARIMA models for the 
precipitation time series. This can be seen in Fig. 6. 
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Figure 6. Percentage of AR and MA terms employment (except for lag 12) in SARIMA models of monthly 
precipitation sums recorded at 44 measurement stations, according to the lag, 

 
When discussing the results, we can state that no dependence between the elevation of 

measurement stations and the appearance of constructed SARIMA models was found. However,, we 
got some unforeseen results when examining the dependence on the latitude and longitude of the 
measurement stations. 

As for the latitude, we can see that eleven out of fifteen stations for which the lag 3 term was 
the part of the SARIMA model, belong to the fifteen southernmost stations. All three stations for 
which the term MA(8) was employed in the SARIMA model are situated in maximum proximity to 
one another – between 49°34'33'' and 49°36'42''. Six from other seven measurement stations for 
which the lag 15 term was the part of the model also lie in close proximity (between 49°34'58'' and 
49°58'49''). The three norhernmost stations are the only ones for which the lag 31 term became the 
part of the model, etc. Thus, the conclusion can be made that there is a considerable connection 
between the latitude of measurement stations and SARIMA models. 

When investigating dependence on the longitude, we obtained similar results. Let us point 
out some of them. All fifteen measurement stations for which the lag 3 term was involved in the 
SARIMA model are among the westernmost half of the measurement stations. In the quaternion of 
neighbouring measurement stations (between 17°52'34'' and 18°26'33'') are all three stations with 
the lag 20 term in the SARIMA model, etc. Thus, as for the longitude, a similar conclusion can be 
drawn – a link between the longitude of measurement stations and SARIMA models exists. 
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 THE   CASE   OF   EUROPE   2020   INDICATORS   
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Abstract. The paper is focused on issue of aggregating Europe 2020 indicators to the composite 
indicator. Generally speaking, we can compare countries by multi-dimensional methods and/or 
by a composite indicator (the second alternative has been chosen for the paper). When 
constructing the composite indicator, we need to select indicators, select a method of 
aggregation and assign weights for partial indicators. In this paper some methods for 
aggregation and weighting and the different composite indicators are compared.  
 
Key words. Composite indicator, Europe 2020, weighting scheme, international statistical 
comparison   
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1 Introduction 
 
For the international statistical comparison, we can generally use two types of methods. Firstly, the 
wide spectrum of multidimensional methods is at a disposal. As another approach we can construct 
the composite indicator. Constructing of composite indicator is a very difficult process with several 
steps (data selection, imputation of missing data, multivariate analysis, normalisation, weighting 
and aggregation, uncertainty and sensitivity analysis, visualisation)1. The aim of this paper is to 
compare some weighting and aggregation methods at the constructing of composite indicator based 
on Europe 2020 indicators2 and to compare the countries using different indicators.   
We compare countries using Equal Weighing Method, Principal Component Analysis and Factor 
Analysis, and Benefit of Doubt Approach. Methods which need subjective input are not included to 
our analysis. 
 

                                                 
1 See also OECD (2008), pp. 20 – 21.  
2 See Eurostat (2010), http://epp.eurostat.ec.europa.eu/portal/page/portal/europe_2020_indicators/headline_indicators 
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2 Data and Methodology 
 
We use 8 main indicators from Europe 2020: A strategy for smart, sustainable and inclusive 
growth.3 These indicators contain: 
 
Employment rate by gender, age group 20-64    (EMP) 
Gross domestic expenditure on R&D     (GERD) 
Greenhouse gas emissions, base year 1990     (GH) 
Share of renewables in gross final energy consumption   (RE) 
Energy intensity of the economy      (EN) 
Early leavers from education and training by gender   (EL) 
Tertiary educational attainment by gender, age group 30-34  (TE) 
Population at risk of poverty or exclusion     (POV) 
 
Weighing scheme could have a crucial influence for the composite indicator. We can divide 
methods of aggregation and weighing to the two main types:  
(i) methods based on statistical methods and 
(ii) methods based on opinions of researchers.   
 
The second type of methods we do not consider at this paper, only the methods based on statistical 
methods are compared.  
 
We compare these three methods: 
 
 
2.1 Equal weighting (EW) 
 
Using this method, the equal weight is assigned for each indicator: 
 

 
1

qw
Q

   (1) 

where qw is weight for qth sub-indicator (q = 1,...,Q) and for country c ( c = 1,...,M).  

 
It means all sub-indicators are given the same weight for all countries. Linear aggregation is used in 
the summation to composite indicator: 

 
1

Q

c qc q
q

CI I w


   

 
 
2.2 Principal Component Analysis (PCA) a Factor Analysis (FA) 
 
Principal components analysis, and more specifically factor analysis, groups together individual 
indicators which are collinear to form a composite indicator that captures as much as possible of 
the information common to individual indicators. The individual indicators must have the same unit 

                                                 
3 See also http://ec.europa.eu/europe2020/index_en.htm.  
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of measurement. Each factor (usually estimated using principal components analysis) reveals the 
set of indicators with which it has the strongest association. The idea under PCA/FA is to account 
for the highest possible variation in the indicator set using the smallest possible number of factors. 
Therefore, the composite no longer depends upon the dimensionality of the data set but rather is 
based on the “statistical” dimensions of the data.4 
 
Principal component analysis and factor analysis need a significant correlation between partial 
indicators, because the weights are set in accordance to correlation between indicators. We can see 
a correlation matrix (see table 1)5.  
 
Table 1. Correlation Matrix of Europe 2020 Indicators 

 EMP GERD GH RE EN EL TE POV 

EMP 1.000 -0.073 -0.095 -0.457 0.241 -0.037 -0.142 -0.110 

GERD -0.073 1.000 0.018 0.334 -0.115 0.207 -0.058 0.350 

GH -0.095 0.018 1.000 -0.071 0.215 0.240 -0.115 -0.089 

RE -0.457 0.334 -0.071 1.000 -0.373 -0.012 0.184 0.221 

EN 0.241 -0.115 0.215 -0.373 1.000 0.190 -0.495 -0.252 

EL -0.037 0.207 0.240 -0.012 0.190 1.000 -0.273 -0.044 

TE -0.142 -0.058 -0.115 0.184 -0.495 -0.273 1.000 0.196 

POV -0.110 0.350 -0.089 0.221 -0.252 -0.044 0.196 1.000 

Source: Computation of authors 
 
The correlations between indicators are relatively small. Despite this fact, weights for 4 factors are 
experimentally computed in the next part of the paper. 
 
 
2.3 Benefit of Doubt approach (BOD) 
 
BOD is a method a based on adjusted Data envelope analysis (DEA) which is used mainly at 
production issues. Using BOD, the composite indicator is defined as the ratio of a country’s actual 
performance to its benchmark performance. 
 
Data should be standardised using „min-max“ method. Each value  of indicator q for country c 
and time t (in this paper for year 2008) is transformed using the formula 

 

 
 

   
min

max min

t t
qc c qt

qc t t
c q c q

x x
I

x x





  (2) 

 

After standardisation, all the values lies between 0 (laggard,  mint t
qc c qx x ) and 1 (leader,  

 maxt t
qc c qx x ). 

 
                                                 
4 Quoted directly from OECD (2008), p. 89. 
5 See also Hudrlikova (2010). 
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There is not one weighing scheme for all countries. For each country, they are used weights which 
are optimal for this country. It guarantees the best position for the associated country vis-à-vis all 
other countries in the sample. With any other weighting profile, the relative position of that country 
would be worse. Optimal weights are obtained by solving the following constrained optimisation6: 
 

 *

1

max
Q

c qc qc
q

CI I w


   (3) 

s. t. 

1
1

Q

qk qk
q

I w


 ,            0qkw  , 1...k M  , 1...q Q   

 

where k means countries and q means sub-indicators. 
 
 
3 Results 
 
3.1 Principal component analysis and its comparison with equal weights 
 
Setup of weights using PCA is based on eigenvalues and then from the optimal numbers of 
components7. In tables 2 and 3 one can see factor loadings for 4 principal components and squared 
factor loadings. 
 

Table 2 Factor loadings based on principal components 

  Factor 1 Factor 2 Factor 3 Factor 4 

EMP -0.510 -0.306 -0.607 -0.209 
GERD 0.363 0.624 -0.48 0.006 

GH -0.266 0.463 0.464 -0.623 
RE 0.705 0.332 0.184 0.331 
EN -0.765 0.221 -0.053 0.083 
EL -0.247 0.698 0.02 -0.034 
TE 0.604 -0.431 0.153 -0.432 

POV 0.542 0.199 -0.495 -0.354 
 Eigenvalues 2.265 1.57 1.12 0.861 

Source: Computation of authors 
 

Table 3 Squared factor loading (scaled to unity sum); re-scaled weight 
  Factor 1 Factor 2 Factor 3 Factor 4 WEIGHT 

EMP 0.115 0.060 0.329 0.051 13% 
GERD 0.058 0.248 0.206 0.000 13% 

GH 0.031 0.137 0.192 0.451 15% 
RE 0.219 0.070 0.030 0.127 13% 
EN 0.258 0.031 0.003 0.008 11% 
EL 0.027 0.310 0.000 0.001 9% 
TE 0.161 0.118 0.021 0.217 13% 

POV 0.130 0.025 0.219 0.146 12% 
Expl.var 2.265 1.57 1.12 0.861  

                                                 
6 See also OECD (2008), p. 83. 
7 See also Hudrlikova (2010). 
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Note: Weights are normalized by squared factor loading, which is the portion of the variance of the factor explained by 
the variable. Source: Computation of authors 
This is a case of setup of weights using principle component analysis. Using maximum likelihood 
method the weights could be different. We also can use factor analysis: the weights are influenced 
both by the extraction method and the rotation method as well. 
As we said, neither PCA nor FA is feasible for weighing at a case of Europe 2020 indicators due to 
small correlations between sub-indicators. However, weights by Equal Weight Method and PCA are 
compared in table 4. 
 

Table 4 Weights for the Europe 2020 indicators based on different methods 

geo EMP GERD GH RE EN EL TE POV 

EW 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

PCA 0.132 0.129 0.153 0.129 0.111 0.095 0.131 0.121 
Source: Computation of authors 
 
 
3.1 Weights by Benefit of Doubt Approach 
 
Table 5 Weights by BOD approach applied to Europe 2020 indicators, Composite Indicators 

geo EMP GERD GH RE EN EL TE POV CI 
Denmark 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.00 
Cyprus 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.00 
Latvia 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.00 

Netherlands 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.00 
Poland 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.00 
Sweden 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00 
Slovenia 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.006 0.99 

Italy 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.95 
Lithuania 0.000 0.000 0.974 0.000 0.000 0.000 0.072 0.000 0.92 

Greece 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.92 
Finland 0.000 0.958 0.000 0.000 0.000 0.000 0.050 0.000 0.91 
Estonia 0.000 0.000 0.971 0.000 0.000 0.000 0.000 0.084 0.91 
Spain 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.91 

Czech Republic 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.953 0.90 
Portugal 0.000 0.000 0.000 0.096 0.959 0.000 0.000 0.000 0.84 

United Kingdom 0.000 0.000 0.150 0.000 0.898 0.000 0.000 0.000 0.81 
Romania 0.000 0.000 0.920 0.000 0.000 0.116 0.000 0.000 0.77 
Bulgaria 0.000 0.000 0.920 0.000 0.000 0.116 0.000 0.000 0.75 
Slovakia 0.000 0.000 0.228 0.000 0.000 0.830 0.000 0.000 0.71 
Austria 0.000 0.000 0.000 0.084 0.730 0.290 0.000 0.000 0.59 
Ireland 0.000 0.000 0.000 0.000 0.643 0.441 0.000 0.000 0.57 

Germany 0.000 0.045 0.584 0.000 0.548 0.000 0.000 0.000 0.55 
Luxembourg 0.000 0.000 0.030 0.000 0.384 0.000 0.000 0.628 0.53 

EU - 27 0.000 0.000 0.456 0.042 0.620 0.066 0.000 0.000 0.51 
Malta 0.000 0.000 0.000 0.000 0.400 0.000 0.000 0.633 0.48 
France 0.000 0.000 0.247 0.000 0.376 0.565 0.000 0.000 0.43 

Belgium 0.000 0.000 0.247 0.000 0.376 0.565 0.000 0.000 0.42 
Hungary 0.000 0.000 0.247 0.000 0.376 0.565 0.000 0.000 0.40 

Source: Computation of authors 



 
 
 

Aplimat – Journal of Applied Mathematics

 

   volume 4 (2011), number3
 
 

296

Weights derived from equal weights method and PCA on one hand are not comparable with weights 
derived from benefit of doubt approach on the other hand. At BOD, weights are assigned 
individually for each country. In table 5, there are weights for each country and in the last column 
there is a component index value for each country. The value of CI lies between 0 and 1, when the 
value 1 is considered as a benchmark.  
The main disadvantage of this method is that without setup of borders (min-max values) the weight 
is given by an indicator in which the country is the best. For some countries the value of composite 
indicator is equal to 1. The results are influenced by the fact that countries with only one best value 
are considered as successful.  
On the other hand, setup of borders needs to take subjective opinion into account. For example, it is 
possible to state that the weight of each indicator has to be between 5 % and 30 %. This approach 
will lead to significant change of weights.   
The results obtained by BOD approach show in which indicator is the individual country „strong“. 
E. g., the Czech Republic has a good value at indicator POV (poverty and social exclusion). 
 
 
3.3  Comparison of countries 
 
In table 6 (see below), one can see a comparison of individual countries depending of weighing 
scheme. While the ranking using EW and PCA is similar (see also table 4), the ranking based on 
BOD approach is quite different. Note that Sweden ranks first with all used methods. Slovakia has 
quite similar ranking when EW (20th), PCA (21st) and BOD (19th) are used. One the other hand, 
Finland ranks second with EW and also with PCA but only 11th according to BOD. Clearly with 
BOD method there is a problem with countries that has one leading sub-indicator. This is an 
example of Cyprus, Latvia and Poland. So these countries have CI equals to 1 and took the first 
place according to BOD. 
 
 
4 Discussion 
 
Advantages and disadvantages of the methods have been indicated. As it can be seen from table 6, 
the ranking is strongly influenced by the methods used for weighting. We considered just the 
methods which do not need subjective opinion. From the second type of methods, we can use for 
example budget allocation process, public opinion approach, analysis hierarchy process or conjoint 
analysis. 
 
 
5 Conclusion 
 
Methods for setup of weights for construction of composite indicator have been compared in 
empirical case of Europe 2020 Indicators (which are used for monitoring of Europe 2020 Strategy). 
Different methods can be used and on this empirical case we can see that a comparison of countries 
using a composite indicator strongly depends on setup of weights. There is no general consensus 
which weighting scheme is the best. In the case of indicators Europe 2020, equal weighting can not 
face the problem that there are eight indicators but they represent only 5 targets of EU policy.  PCA 
seems as inadequate because of the assumption of correlation between sub-indicators. BOD has two 
cons. One of them was mentioned above. It is value 1 for CI of countries with leading sub-indicator. 
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It implies a problem of compensation of individual sub-indicators. The solution could be in setting 
boundaries - minimal and maximal weight for one sub-indicator in CI. However, setting boundaries 
change the character of the method from an objective to a subjective one.  
Subjective methods for comparison of countries could be also taken into account, their using in thi 
case will be a subject of further research. To choose the appropriate weighting and aggregation 
method there is needed the next step in constructing CI – uncertainty and sensitivity analysis. 
 
Table 6 EU country rankings based on different weighting methods 

 EW PCA BOD 

Sweden 1 1 1 

Finland 2 2 11 

Denmark 3 3 1 

Austria 4 5 20 

Netherlands 5 4 1 

France 6 7 26 

Germany 7 6 22 

Slovenia 8 10 7 

Estonia 9 8 12 

Luxembourg 10 12 23 

Belgium 11 11 27 

Ireland 12 14 21 

United Kingdom 13 9 16 

Lithuania 14 13 9 

EU (27 countries) 15 16 24 

Latvia 16 15 1 

Czech Republic 17 17 14 

Cyprus 18 18 1 

Spain 19 19 13 

Slovakia 20 21 19 

Portugal 21 20 15 

Poland 22 22 1 

Greece 23 23 10 

Italy 24 24 8 

Hungary 25 25 28 

Bulgaria 26 26 18 

Romania 27 27 17 

Malta 28 28 15 
Source: Computation of authors 
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DETECTION   OF   CHANGE   POINT 

   IN  STATISTICAL   PROCESS CONTROL 
 

JAROŠOVÁ  Eva,  (CZ) 
 
Abstract. The paper deals with the Bayesian approach to the statistical control. The shift of the 
process mean is detected via a high value of the posterior probability. The average run length and the 
risk of false alarm are computed numerically by simulation for various levels of the shift and for 
different sample sizes. Both known and unknown process standard deviation are considered. The 
results of simulation show that the method performs better than the Shewhart control chart and 
confirm its usability in short run processes with the exception of individual values from the process 
with an unknown standard deviation. 
 
Key words. Bayesian approach, average run length, risk of false alarm, Shiryayev-Roberts statistic.  
 
Mathematics Subject Classification:  62P10, 62-07 
 
 
1 Introduction 
 
Statistical control of industrial processes is one of the most frequently used tools in quality control. 
A process is monitored through samples of relatively small size drawn at regular intervals. Sample 
characteristics are plotted against their order and compared to limits in the control chart. When a 
point falls beyond the control limits a signal is given that parameters of the process may have 
changed and so the process is out of control. Shewhart control charts for averages are very often 

applied. The control limits are positioned at 3 / n away from the central line which corresponds 
e.g. to the target process mean, standard deviation  represents variation of the process that is under 
control and n denotes the size of subgroups.  
When standard deviation   is not known, 20 or 25 subgroups should be taken before the control 
limits are constructed. It cannot be accomplished in short run processes that are typical for modern 
business strategies. Various approaches were suggested to solve this problem. They include self-
starting CUSUM chart [3], Q-charts [4] and others. Some methods are based on the Bayesian 
approach [2] and two of them were examined in [1]. To assess performance of different methods 
some characteristics are evaluated. The average run length (ARL) is the average number of 
subgroups taken until a point indicates an out-of-control condition. ARL is determined for several 
levels of shift  in the process mean including 0  . It is obvious that for 0   a fairly long ARL 
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is desirable while for a non-zero shift ARL should be as short as possible. The risk of false alarm 
(RFA) is the probability that a signal occurs without the process mean being shifted. RFA must be 
fairly small to avoid overcontrol. These characteristics must usually be determined numerically by 
simulation.  
The aim of this paper is to examine one of the Bayesian methods in more detail. Some findings 
from [1] are used and other simulations are performed to explore the effect of the sample size and 
of the unknown process  . 
 
 
2 Detection of the change point 
 
Suppose that a process is monitored at regular intervals and that means are determined in samples 
of size n. The sample means are assumed to have a normal distribution with mean 0  and variance 

2 / n  when the process is under control. Suppose the process mean changed from 0  to  1  at 

some time 0t  and remains at this level since then. Time 0t  of the change in the process mean is 

called the change point. Kenett and Zacks [2] present the following approach.  
The probability that the change point occurred before or at sampling time t is determined repeatedly 
and its large value indicates the existence of a change point. A random discrete parameter   is 
defined, where 
 
 0   when the change point occurred before the first sampling time, 
 
 (1 )i i t     when the change point occurred between the i-th and (i+1)st sampling time,  
 
 t   when the change point occurred after time t.

 

 
 
The modified geometric prior distribution of this parameter at time t is used, defined by 
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Here  denotes the probability that the shift in the process occurred before the first sampling time 
and p is the probability of success on each trial (i.e. the probability that the shift occurs within the 
time interval between two successive samplings). Contrary to the ordinary geometric distribution, 
the set of values of   is finite. We will assume that no shift occurred before the process started to 
be monitored. Then 0  and formulas (1) become simpler  
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The posterior probability function of   at sampling time t given sample means 1 2, , ... , tX X X  is 
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where the likelihood  1( ; ,..., )t tL X X is given by 
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Functions 0( ; )jf X and 1( ; )jf X are densities of normal distributions   2

0( , / )N n  and 

  2
1( , / )N n , respectively. At the sampling time t  we are interested in the posterior probability 

  1( | , ..., )tP t X X  that the change point has occurred. Using equations (2), (3)  and (4), we have 
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It can be rewritten as 
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where 
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Kenett and Zacks [ ] use an approximate expression 
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 is Shiryayev-Roberts statistic.  
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In paper [1] the original expression (6) was considered. Putting 
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tZ  can be determined recursively 
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and the probability   1( | , ..., )tP t X X  is given by 
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If   1( | , ..., )tP t X X  is larger than some stopping threshold  *  a signal is given that a change point 

has occurred that is that the process mean has shifted. 
When  of the process must be estimated, a recursive formula for sample size 2n     
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can be used, where 2
ls  is the sample variance at the lth sampling time.  

 
 
3 Simulation study 
 
The prior distribution (2) with p = 0.05 was used based on the simulation study in [1]. To compute 

jR  according to (7), the deviation from 0  which is to be identified, i.e. 1 0     has to be set. 

The size of shift  corresponded gradually to  , 5.1 , and 2 , where   is the standard deviation 
of the pocess. Based on [1], the stopping threshold equal to 0.99865 was chosen. This value 
imitating the one-sided risk of false alarm in the Shewhart control chart seemed to guarantee a 
sufficiently low risk of false signal.  
The aim of the simulation study was to evaluate ARL for different sample sizes n and for both 
known and unknown  . Monte Carlo method was used to simulate drawing subgroups from a 
process within SPC. Three situations were considered: 

a) a process under control with the mean equal to the target value; in this case 1000 samples 
from N(10, 9) were generated in one cycle, 

b)  process with a shift of the mean equal to  that occurred between sampling times 5t and 
6t ; first 5 samples came from N(10, 9), the remaining 95 samples from N(10 , 9) , 

c)  process with a shift of the mean equal to  that occurred between sampling times 10t  and 
11t  ; first 10 samples came from N(10, 9), the remaining 90 samples from N(10 , 9) . 

The sample size changed from 2 to 5 and in case of known   also individual values were 
considered. For all conditions 1 000 cycles were performed every time and the number of samples 
until    *

1( | , ..., )tP t X X were recorded. Results are given in tables 1 to 4.        
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Table 1.  Empirical ARL0 based on 1000 subgroups. 

n 
known   unknown   

3 4.5 6 3 4.5 6 

1 956 976 982 - - - 

2 982 988 991 923 932 952 

3 988 991 996 963 977 984 

4 987 992 994 979 986 989 

5 988 994 997 978 990 996 

 
    

Table 2.  Empirical RFA based on 1000 subgroups. 

n 
known   unknown   

3 4.5 6 3 4.5 6 

1 83 42 33 - - - 

2 40 21 14 100 79 54 

3 26 16 6 49 34 20 

4 27 14 9 36 19 14 

5 22 9 6 31 13 8 

 
 

Table 3.  Empirical ARL , change point between 5th and 6th sampling time 

n 
known   unknown   

3 4.5 6 3 4.5 6 

1 14.052 6.964 4.067 - - - 

2 7.661 3.601 1.936 7.305 3.430 1.926 

3 5.275 2.416 1.219 5.163 2.287 1.202 

4 3.953 1.736 0.792 4.002 1.686 0.795 

5 3.258 1.260 0.492 3.146 1.285 0.522 
 

Table 4.  Empirical ARL , change point between 10th and 11th sampling time 

n 
known   unknown   

3 4.5 6 3 4.5 6 

1 13.687 6.741 3.974 - - - 

2 7.527 3.578 2.000 7.439 3.522 2.007 

3 5.295 2.351 1.193 5.258 2.395 1.213 

4 4.052 1.740 0.787 4.075 1.701 0.823 

5 3.200 1.305 0.478 3.202 1.308 0.521 
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Table 5.  ARL in Shewhart control chart, standards given  

n   1.5  2  

1 44 15 6 

2 18 5 2 

3 10 3 1 

4 6 2 1 

5 4 2 1 

 
 
4 Conclusion 
 
The simulation study confirmed good properties of the method. All values of ARL are smaller than 
those of the classical Shewhart control chart (Table 5). The fact that estimating   practically does 
not affect ARL is important. Based on two simulated alternatives with the change point located 
between the 5th and the 6th sampling times or between the 10th and the 11th sampling times, it seems 
that the Bayesian method performs well even for quite short sequences of samples. 
As for individual observations, ARL of the Bayesian method is much better than ARL of the 
Shewhart control chart when  of the process is known. The problem arises, though, when is to 
be estimated. The estimation based on moving ranges used in the control charts for individuals is 
not applicable in the recurrent formula because the change of the process mean at the change point 
is expected to induce a large value of the corresponding moving range and thus to bias the estimate 
of . A possible excluding this “unsuitable” moving range seems to be quite intricate. 
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Abstract. In the article two and three parameter lognormal and three parameter Dagum 
distributions are fitted into data of net annual income per head (in CZK) for the Czech 
households. Data from the survey Statistics of Income and Living Conditions (EU-SILC) 
organized by the Czech Statistical Office in the years 2005 - 2008 are used. The maximum 
likelihood estimates are evaluated and the fits are compared with the use of AIC information 
criterion. Furthermore estimated and sample characteristics are evaluated in order to compare 
results of different models. Estimated probability densities of income per capita for three 
parameter lognormal and Dagum distributions are presented in the figure, where the similar 
progress of distributions during treated four years is obvious. Dagum distribution shows better 
fit to data than lognormal distributions in all analysed years. 
 
Key words. income distribution, lognormal distribution, Dagum distribution, maximum 
likelihood estimation   
 
Mathematics Subject Classification:  Primary 62-07; 62E17 

 
 
1 Introduction 
 
Knowledge of characteristics of income is very important not only for the government, experts and 
professionals in economy but also for the large public. The development of incomes and their 
characteristics in time is also important as it can well describe the progress in the economy and 
quantify level or variance of income or differences between subpopulations. More detailed 
information can be obtained from the modelling of the whole distribution of incomes. It provides 
not only characteristics but also probability density, distribution or quantile functions. 
From the point of view of statistics, different probability distributions or its mixtures can be fit into 
data. Such distributions are sometimes called income distributions. For the successful model of 
wages or incomes a flexible, skewed distribution with high variability is necessary. The most 
frequently used distributions are lognormal with two, three and four parameters [1]-[4],[9], Dagum 
distribution, generalized lambda distribution [7] or mixtures of distributions mentioned above (for 
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the finite mixtures of lognormal distributions see [8]). For the high incomes extreme value 
distribution or Pareto distribution are usually used.  
 
 
2.  Methods 
 
In the text two and three parameter lognormal distributions are used as a model for income 
distribution. If X is a random variable, then the two parametric lognormal distribution with the 
parameters µ and σ2 (expected value and variance of the normal distribution of lnX) has the density 
given by a formula (x > 0) 

 
2

2
2
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x
f x
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If the third (shift) parameter θ is included into the model, the density is of the form 
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There exist close formulas for maximum likelihood estimates of the unknown parameters in the 
case of the two parametric lognormal distribution 
 

  22

1 1

1 1
ˆ ˆ ˆln , ln .

n n

i i
i i

x x
n n

  
 

     (3) 

 

In the case of the three parametric lognormal distribution a procedure from Cohen [5] is used in 
order to find maximum likelihood estimates of the unknown parameters. 
The expected value E(X) and percentiles xP are computed with the use of formulas  
 

  2 ( ) exp( / 2),    exp    0 1.P PE X x u P              (4) 
 

where uP  is a 100P % quantile of a standard normal distribution. The level of the random variable 
can be expressed (except for the expectation and the median) also by a mode. In the lognormal 
distribution the value xmode, where the maximum of the density occurs, is given by the formula 
 

 
2

mode .x e     (5) 
 

For the two parameter distribution 0   is used in (4) and (5). 
The third distribution that is used in this text is three parameter Dagum distribution, called also 
Inverse Burr´s. This distribution is frequently used in actuarial applications, but it can be used also 
for the modelling of the distribution of wages and incomes with very good results. The density of 
this distribution is given by the formula  
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where ,  and p are positive parameters. The distribution function of this distribution can be 
written in the form 
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  /( .) 1 ( )
p

xF x 
  (7) 

 

Expected value (at least in the set of values of parameters we want to use in the modelling) is 
evaluated from the formula 
 

     ( ) =    1 /  1  1 /  /  ( ).E X b p p        (8) 
 

After the straightforward calculation from (7) quantiles xP are given by 
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The maximum of density function occurs in  
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Three unknown parameters α, b and p are estimated with the use of maximum likelihood method. 
The logarithmic likelihood function is maximized in the program R in order to obtain maximum 

likelihood estimates ˆˆ ˆ,  and .p   It is known [6], that maximum likelihood estimates are sensitive to 
isolated observations (and there are isolated large incomes in our data) but the sample sizes are 
large enough to obtain reasonably good fits. In this text all estimates are made with the use of 
maximal likelihood and the models are compared by values of logarithmic likelihood in the final 
solution and Akaike criterion, that reflects number of parameters in the model distribution (two for 
three parameters in the lognormal distribution and three for Dagum distribution). 
 
 
3 Data Analysis and Results 
 
In the paper individual data of Czech households from the survey Results of the Living Conditions 
Survey (a national module of the European Union Statistics on Income and Living Conditions (EU-
SILC)) for years 2005, 2006, 2007 and 2008 are analysed. These surveys have been organized 
regularly by the Czech Statistical Office since 2005. Data for various types of income of the Czech 
households are collected together with descriptive characteristics of a household as status of head of 
household, number of persons in job and number of dependent children, household type, age and 
education of head of household, size of municipality or region of living. For this text a net anual 
income per capita was evaluated as a ratio of a net total income of a household (in CZK) and a 
number of persons in a household. This variable is a ratio of two random variables, its value was 
evaluated for each household and this dataset was treated data as a random sample (not stratified as 
it in fact is).  

Table 1: Maximum likelihood estimates of unknown parameters 
Distribution Lognormal (2 parameters) Lognormal  (3 parameters) Dagum (3 parameters) 

 Parameter ̂  ̂  ̂  ̂  ̂  ̂  ̂  p̂  

2005 11.503 0.454 11.503 0.454 -2.050 4.091 96,366.6 1.060

2006 11.542 0.446 11.542 0.446 -8.805 4.150 99,319.8 1.084

2007 11.623 0.436 11.623 0.435 -42.288 4.243 107,219.1 1.098

2008 11.702 0.422 11.703 0.421 -171.167 4.330 113,878.9 1.159
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There are 4,351 observations for the year 2005, 7,483 for 2006, 9,675 for the year 2007 and 11,294 
form the year 2008 in the dataset.  From these households 3,314 are included in all years, there are 
in total 13,504 households in all data sets. 
Estimated parameters of all fits for analysed years are given in the Table 1 and estimated densities 
are shown in the Figure 2. Parameters of lognormal distributions are almost equal and the test of  
the hypothesis that parameter θ in three parametric distribution is equal to zero is nonsignificant on 
sigificance level 0.01   (values not included in the text). In order to compare sample and 
theoretical characteristic based on fits and values of parameters from the Table 1, sample and 
theoretical values of characteristics of the level of income are given in the Table 2 (only for three 
parameter distributions, characteristics for the two parameter lognormal distribution are very similar 
to those of three parameter distribution). 

 
Table 2: Sample and estimated characteristics of the net annual income per capita (CZK) 
Distribution 

Year 
10% 

quantile 
25% 

quantile Median
75% 

quantile
90% 

quantile mean mode 
Sample 2005 58 120 79 600 97 050 124 068 171 833 111 024  

2006 60 832 82 998 100 640 128 000 174 904 114 945  
2007 68 147 90 000 108 744 138 000 189 505 123 806  
2008 76 571 97 160 117 497 148 937 202 327 132 877  

lognormal 2005 55 379 72 938 99 047 134 502 177 145 109 781 80 624
2006 58 156 76 233 102 976 139 100 182 331 113 734 84 416
2007 63 875 83 209 111 621 149 730 195 034 122 719 92 344
2008 70 374 90 910 120 810 160 524 207 304 132 014 101 170

Dagum 2005 58 385 75 622 98 284 128 138 167 379 108 678 86 923
2006 61 424 78 982 102 028 132 356 172145 112 507 90 514
2007 67 484 86 139 110 517 142 467 184 187 121 365 98 522
2008 74 496 93 908 119 272 152 602 196 067 130 563 106 708

 
Table 3 contains values of logarithmic likelihood functions (referred as loglikelihood in the table) 
for all years and all distributions together with the value of AIC statistics defined by 

 

 2 * number of parameters 2 * loglikelihood.AIC    (11) 
  

Table 3: Comparison of fits 

Distribution 
2( ; )LN    2( ; ; )LN     Dagum 

Year loglikelihood AIC loglikelihood AIC loglikelihood AIC 
2005 -52 785 105 573 -52 784 105 574 -52 608 105 221 
2006 -90 942 181 887 -90 940 181 886 -90 612 181 230 
2007 -118 135 236 273 -118 129 236 265 -117 689 235 383 
2008 -138 429 276 862 -138 408 276 822 -137 849 275 703 

 
All values of AIC are similar but the value is lesser for Dagum distribution in all analysed years. 
In the Figure 1 the development of estimated percentiles 10%, 25%, 50%, 75% and 90 % obtained 
from fitted distributions are compared with sample quantiles The estimates of the characteristics of 
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the level of income are very close for both fits and well coincide with the sample values. We can 
see that lognormal distribution underestimates values of quantiles 10 and 25 percent and 
overestimate quantiles above median. The correspondence for Dagum distribution is similar, 
estimated and sample values are again closer than for lognormal distribution.     
 

 
 
Figure 1: Sample quantiles of the net year income per capita in CZK (squares), estimated quantiles 
(Dagum dotted line, lognormal solid line). From the bottom 10%, 25%, 50%, 75% and 90%. Mean 
value (circle) and estimated expectation (lines) in grey colour. 
 
Estimated densities from the three parametric lognormal and Dagum distribution are shown in the 
Figure 2. Solid lines are lognormal densities and dotted lines mean Dagum densities.  
 

 
 
Figure 2: Estimated densities (Dagum distribution (dotted line) and three parameter lognormal 
distribution (solid line)). From the left to the right 2005 to 2008. 
 
The development during years is obvious, curves moves from the left (year 2005) to the right 
(2008). Furthermore the densities are lower and lower in time that reflects increasing variability in 
incomes in years. 
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4 Conclusions 
The Dagum distribution is suitable for the modelling of the net income per capita in the Czech 
Republic. According to the Akaike´s criterion the fit of Dagum distribution is superior to the 
lognormal distribution. The three parameter lognormal distribution provides comparable results to 
the distribution with two parameters.  Estimates of shift parameter theta are negative for all years in 
the analysis, but large standard errors of estimates (if compared to the standard errors of estimates 
of other parameters) lead to the nonsignificant test of the parameter.  
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Abstract. Basically, semiparametric regression methods, which try to combine the advantages 
of both parametric and nonparametric approach to regression analysis, are often concerned with 
a flexible incorporation of nonlinear functional relationships in regression analysis. In 
particular, penalized spline regression uses the idea of nonparametric spline smoothing and it is 
in fact just a generalization of smoothing splines that should allow more flexibility in a choice 
of the spline model, the basis functions, and the penalty. The purpose of this article is to 
compare a penalized spline regression fit with an estimation based on a nonlinear regression 
model, which is calculated by a method of nonlinear least squares. Furthermore, some 
advantages and possible extensions of the penalized spline regression method are discussed. 
 
Key words. regression analysis, semiparametric approach, spline smoothing, penalized splines, 
nonlinear regression 
 
Mathematics Subject Classification:  Primary 62G08; Secondary 62J02. 

 
 
1 Introduction 
 
Arguably, one of the most important questions in many fields of science is modeling of a general 
relationship between a response variable and one or more explanatory variables. Basically, this 
estimation of a conditional expectation of a response variable can be done in two ways. The widely 
used parametric approach assumes that the conditional mean function is of some specific functional 
form, e.g. in case of linear regression a line with unknown slope and intercept. The advantages of 
this parametric approach are a thorough theoretical framework and ease of interpretability. 
 
An alternative approach tries to estimate the conditional mean function nonparametrically, i.e. 
without any prior assumptions about its functional form. These nonparametric methods are mostly 
only data-driven, which has an obvious advantage – these methods do not rely on a specification of 
the model describing a relationship between a response variable and explanatory variables. 
Some techniques try to combine the ideas of both parametric and nonparametric regression methods 
and the penalized spline regression is definitely one of them. The biggest advantage of the penalized 
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spline regression is that, on the one hand, there is no a priori need to know a functional form of the 
underlying relationship, and on other hand, the estimation based on the penalized spline method is 
similar to a parametric estimation. 
 
Since semiparametric regression methods are often concerned with a flexible incorporation 
of nonlinear relationships into a regression model, the main aim of this article will be a comparison 
between a nonlinear regression model estimated by the method of nonlinear least squares and 
a penalized spline regression fit. This comparison will be demonstrated on the dataset taken from 
Ratkowsky (1983). This dataset contains observed data, where the response variable is onion bulb 
dry weight, and the explanatory variable is growing time. 
 
 
2 Penalized Spline Regression 
 
2.1 Spline Model 
 
The spline regression is essentially based on spline functions, i.e. piecewise polynomial functions. 
For example, the simple p-degree spline model can be defined as 
 

    



K

k

p
kpk

p
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where (x – κk)+ is the positive part of the function x – κk, sometimes referred to as a truncated line, 
and the value of κk corresponding to this function is usually called a knot. Basically, the number and 
the location of the knots can be arbitrary, but an automatic knot selection is reasonable, especially 
when using more elaborate penalized spline models. Therefore, Ruppert et al. (2003) proposed 
a default number of knots in the form 
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with knots being located at equally spaced quantiles, but in practice a lower number of knots is 
often sufficient. 
 
However, a spline function defined without any restrictions can be too rough. One way to obtain 
a smooth curve is to constrain the influence of the knots. This can be achieved by adding 
a constraint on the coefficients βpk of the form 
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and D = diag(0p+1, 1K) it can derived (e.g. using the method of Lagrange multipliers) that the least 
squares fit for the penalized spline regression model is given by 
 

   ySyXDXXXy hh   12ˆ , (2.4) 
 

where h is a smoothing parameter and Sh is a smoother matrix. 
  
An interesting fact about the penalized spline estimators described here is that they can be defined 
as a best linear unbiased predictor of a mixed model. Using the notation 
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the model (2.1) can be also formulated as 
 

 εZuXβy  , (2.5) 
 

where the coefficients u are treated as random with the covariance matrix 
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The consequence of this mixed model representation of penalized splines is that it can be fit using 
mixed model software with restricted maximum likelihood method used to select the appropriate 
amount of smoothing as 
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2.2 Choice of a smoothing parameter 
 
The smoothing parameter selection based on eq. (2.7) depends on the mixed model representation 
of penalized splines. However, many other nonparametric smoothing techniques do not have such 
a representation and therefore several other procedures, which can help a researcher with selection 
of an appropriate amount of smoothing, have been proposed. 
 
Probably the most common approach is based on a cross-validation function. This function is 
defined as 
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where m(-i) denotes the leave-one-out estimator, i.e. the regression estimator applied to data with 
(xi, yi) omitted. This leave-one-out estimator can be calculated using a smoother matrix Sh as 
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The CV choice of the smoothing parameter h is the one that minimizes CV(h) over h ≥ 0. 
 
One of the other possible methods that can guide the choice of the smoothing parameter is the 
penalizing function approach. This approach is based on minimizing the "penalized" weighted 
residual sum of squares using some penalizing function. Details of this approach are described, for 
example, in Härdle et al. (2004). 
 
 
2.3 Construction of Confidence and Prediction Intervals 
 
Suppose a penalized spline regression model 
 

   iii xmy  , (2.10) 
 

with independent and identically distributed homoscedastic normal errors 
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Considering that eq. (2.4) is in fact a linear smoother, the estimation of any m(x) can be written as 
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It can be shown that under these circumstances it is possible to use the following approximation 
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where [dfres] is the closest integer to the value of residual degrees of freedom, which can be formally 
defined as 
 

     hhhndf SSS trtr2res . (2.14) 
 

Therefore, a confidence interval can be written as 
 

   xxm s ̂tˆ 2/1 . (2.15) 
 

Analogously to a parametric regression, a prediction interval for any observation at x is  
 

   2

2/1 1ˆtˆ xxm s    . (2.16) 
 

Moreover, it is convenient to keep in mind that for large samples the normal approximation works 
reasonably well even if the errors are not necessarily Gaussian. Also, in case of heteroscedastic 
errors, the variance function estimation may be considered. 
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2.4 Additive model 
 
The theoretical framework described so far can be easily extended so that it will allow multiple 
explanatory variables. Since the only assumption made will be the assumption of additivity of 
explanatory variables are the following models referred to as additive models. 
 
For example, an additive linear spline model with two explanatory variables can be defined as 
 

     i

K

k
kik

K

k
kikiii xxxxy   







21

1
222

1
11122110 . (2.17) 

 

The vector of fitted values for this additive penalized spline model is given by 
 

   yCΔCCCy  
1

ˆ , (2.18) 
 

where C is a design matrix and 
 

  
21

2
2

2
1 ,,0,0,0diag KK hh 11Δ  , (2.19) 

 

Another possibility is to use an additive partial linear model, which can be in case of two 
explanatory variables formulated as 
 

   i

K

k
kikiii xxxy   




2

1
22222110 . (2.20) 

 

The estimation of such a model is straightforward. 
 
To conclude, it is important to keep in mind that these additive models, as already mentioned, rely 
on an assumption of additivity. If this assumption is not justified, other models dealing with 
possible interactions may be necessary, e.g. interaction models proposed in Ruppert et al. (2003). 
A test for additivity can be conducted by comparing the additive model to the interaction model and 
checking whether the interaction model offers a significant improvement in fit. 
 
For further details on spline smoothing and penalized spline regression see Eubank (1999) and 
Ruppert et al. (2003) respectively. 
 
 
3 Comparison of the Spline Model with the Nonlinear Model 
 
3.1 Nonlinear model 
 
The dataset used for this comparison has 15 observations and the proper nonlinear regression model 
contains 4 parameters and is of the following functional form 
 

 
   i

i

i
x

y 



 




4/1
32

1

exp1
. (3.1) 

 

This model was estimated by the method of nonlinear least squares. The certified values of the 
parameters provided by Information Technology Laboratory of National Institute of Standards and 
Technology (NIST) are: 
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1,2792.ˆ

7596,0ˆ

5,2771ˆ

699,6415ˆ

44
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







b

b

b

b









  

 

As far as it is not the main aim of this article, the well-known method of nonlinear least squares is 
not described in this paper. For any details of this method see, for example, Seber and Wild (1989). 
The estimated nonlinear relationship between onion bulb dry weight and growing time is depicted 
in the following figure. 
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3.2 Penalized spline model 
 
The penalized spline regression model with a quadratic spline basis and four knots was used for the 
estimation of the relationship between onion bulb dry weight and growing time. The appropriate 
smoothing parameter was selected by minimizing the cross-validation function and the value of the 
chosen smoothing parameter was h = 1,05. 
 
The corresponding penalized spline regression fit, estimated using eq. (2.4), is depicted with its 
confidence interval in the following graph. 
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It is obvious that there are some discrepancies between the smooth curve estimated by the penalized 
spline regression method and the estimation obtained by nonlinear least squares. These differences 
are the most noticeable for the values of growing time higher than 10. 
 
It is possible to test for the statistical significance of this difference, e.g. by using the approximate 
F-test, which is based on the following statistic 
 

    largerres,largerres,smallerres,
2
larger

2
smaller

2
larger

/1 dfdfdfR

RR
F




 , (3.2) 

 

where R2 is a square of the correlation coefficient between y and ŷ. Under the null hypothesis 
(parametric model), this statistic will have an approximate F-distribution with dfres, smaller – dfres, larger 
and dfres, larger degrees of freedom. 
 
For the given dataset the value of the corresponding F-statistic is 2,165 and the corresponding 
p-value is 0,177, which means that the difference between the penalized spline estimator and 
the nonlinear fit is neither statistically nor practically significant. 
 
 
4 Conclusion 
 
This paper describes the so-called penalized spline regression and tries to compare its performance 
with the estimation based on the parametric nonlinear model. Since the nonlinear function was 
carefully chosen, both of these methods gave satisfactory results modeling the nonlinear 
relationship between the dry weight of onion bulbs as the response variable and the growing time as 
the explanatory variable. 
 
One of the biggest advantages of the penalized spline regression is that the relationship between 
a response variable and explanatory variables is modeled in a nonparametric manner, i.e. no prior 
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choice of the functional form of the model is needed. That is why it is very sensible at least to use 
this method to guide the choice of an appropriate parametric model or to test for the adequacy of 
any linear or nonlinear model. Moreover, in many cases the use of the penalized spline regression 
alone is often sufficient. 
 
To conclude, there are several possible modifications of the simple spline model, if some of the 
assumptions are violated. Variance function estimation can be used in case of heteroscedasticity 
in the data or interaction models can be used when the assumption of additivity is not justified. 
Other modifications include generalized additive models, spatially adaptive models or Bayesian 
semiparametric regression. For further details see Ruppert et al. (2003). 
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Abstract. Labor market (employment and unemployment) is influenced by various economic 
indicators. The paper is concerned with trend on labor market measured by number of employed 
and unemployed individuals based on changes in selected economic variables. 
First, multiple linear regression model is proposed and estimated by OLS method using data 
representing the Czech Republic 2003-2009. It confirms that inflation and wage are statistically 
significant for number of unemployed individuals. 
Second, simultaneous equations are defined where number of employed and unemployed 
individuals depend on each other. Unknown coefficients are estimated by TSLS method. 
Proposed model consisting of three equations and including both exogenous and endogenous 
variables has to be simplified because of threat of multicolinearity. Relationship between basic 
macroeconomic indicators is complex and complicates adaptation of theoretical macroeconomic 
constructions to current real data and real situation. Results show that number of unemployed, 
export, wage and number of employed individuals in previous quarter are statistically 
significant variables for number of employed individuals, investments and GDP growth rate are 
statistically insignificant. In 2nd equation there are statistically significant number of employed 
individuals (both for previous and actual quarter), number of unemployed individuals (delayed) 
and GDP growth rate, inflation and wage are statistically insignificant. 
Further, elasticity coefficient and prediction for 2010-2011 is introduced in the paper. 
 
Key words. labor market, employment, unemployment, linear regression, OLS, simultaneous 
equations, TSLS 
 
Mathematics Subject Classification: Primary 62P20, 93E24; Secondary 91B40, 91B64, 91B70, 
91B99. 

 
 
First Section 
 

Supply side of labor market is formed by economic active (EA) people who could be either 
employed (E) or unemployed (U). Labor supply is composed of individuals offering their 
workforce; labor demand is created by employers searching best employees for offered job 
positions. Both employment and unemployment affect performance of each economy and are 
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affected by economic performance, respectively. Their balance is directly connected with social and 
consequently political stability. 
 
1.1 Objectives Definition 
 
Objective of this article is to propose model of simultaneous equations that would describe labor 
market in the Czech Republic and estimate its parameters. The econometric model introduces set of 
macroeconomic and other indicators that influence changes on labor market. 
First, there will be proposed model of linear regression which will be estimated by ordinary least 
square method (OLS). Second, there will be proposed model of simultaneous equations which will 
be tested for multicolinearity and estimated by two-stage least square method (TSLS, 2SLS). All 
results will be tested at significance level  = 0.05. 
Data for estimate come from Labor Force Sample Survey (LFSS) conducted quarterly and from 
Czech Statistical Office (CZSO, www.czso.cz) for period 2003/Q1 – 2009/Q4. Calculated GDP 
growth rate is based on quarter-of-quarter (QoQ) increase. 
 
 
Multiple Linear Regression 
 
1.2 Economic Assumptions 
 
For one-equation model the number of unemployed will be chosen as dependent variable. 
Number of unemployed individuals depends on business cycle phase (growth/recession) which is 
measured by GDP trend and GDP growth rate. It also depends on inflation (Phillips curve) and 
level of wages. Other possible indicators were eliminated from model because of threat of 
multicolinearity which would disqualify any estimates. 
Assumptions: 
 as inflation grows number of unemployed decreases (inversely proportional). This assumption 

comes from Phillips curve economic theory, 
 as wages grow number of unemployed decreases (inversely proportional). If economy is in 

growing phase it is connected with creation of new job positions, demand after workforce and 
growth of wages in order to attract more job applicants. Reverse interdependence between 
declining wages and increasing number of unemployed individuals is not obvious in modern 
economies because wages are not elastic in case of necessary reduction during recession and 
economic crisis; more likely their growth decelerates or stops. This fact could affect results. 

 as GDP growth rate grows number of unemployed decreases because economy is in its growing 
phase (inversely proportional). Similarly to previous assumption there is need of new job 
applicants. Reversely, negative GDP growth rate (recession) induces increasing number of 
unemployed people and unemployment rate because it is connected with reduction of job 
positions. 

 
1.3 Econometric model 
 
One-equation linear model with constant and stochastic variable: 
 yt = β1 x1t + β10 x10,t + β11 x11,t + β15 x15,t + ut , (1) 
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where 
 
y number of unemployed individuals [000]     Source: LFSS 
x1 unit vector 
x10 inflation [%]         Source. CZSO 
x11 average gross monthly wage - full time equivalent [000 CZK]   Source. CZSO 
x15 GDP growth rate (quarter-of-quarter) [%]     Source: CZSO 

   (GDP: previous year average prices, seasonally adjusted), own calculation 
(see Appendix A) 
 
 
1.4 Estimate by OLS 
 
Estimate was obtained using OLS method: 
 yt = 634.196 – 18.857 x10,t – 11.923 x11,t + 1.483 x15,t , (2) 
 
 
1.5 Verification 
 
Economic Verification 
 
 If inflation grows by 1 percentage point number of unemployed decreases by 18,857 

individuals. Assumption made for effect of inflation was confirmed. 
 If average monthly wage increases by 1 thousand CZK number of unemployed decreases by 

11,923 individuals. Assumption made for effect of wage was confirmed even though null 
hypothesis was rejected narrowly. This reflects low elasticity of wages in case of decline 
mentioned above. 

 If GDP growth rate increases by 1 percentage point number of unemployed decreases by 1,483 
individuals. Assumption made for GDP growth rate was not confirmed. Real data show that 
correlation coefficient between number of unemployed and QoQ GDP growth rate based on 
GDP in real prices and seasonally adjusted is +0.290 although correlation between number of 
unemployed and GDP itself is –0.788 as expected from theory. This could be explained by long 
period that is analyzed here (28 quarters) and fact that GDP was already modified – seasonally 
adjusted, in real prices whereas unemployment shows high level of seasonality. 

 
Statistical Verification 
 
Individual t-tests for all estimates show that constant, inflation and wage are statistically 
significant variables and should be included in a model whereas GDP growth rate is statistically 
insignificant. 

variable estimate standard error t-value critical value   
x1 634.196 81.415 7.790

2.064 

** 

x10 -18.857 4.938 3.819 ** 

x11 -11.923 4.041 2.950 * 

x15 1.483 6.336 0.234   
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Coefficient of determination: R2 = 64.84% 
It shows that 64.84% of variance of dependent variable is explained by estimated model. 

Durbin-Watson test for autocorrelation of residuals: DW =  = 0.4128 
Null hypothesis of no autocorrelation in residuals is rejected. There is autocorrelation of first order 
in residuals in model. This systematic part could be eliminated by including delayed dependent 
variable for example. 
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Figure 1: Number of unemployed – observations and predicted time series 

 
 
Simultaneous Equations 
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number of economic active = number of employed + number of unemployed
EA = E + U
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Figure 2: Number of employed and unemployed individuals (CR, 2003/Q1 – 2009/Q4) 

Source: LFSS (CZSO) 
 
1.6 Economic Assumptions 
 
In simultaneous econometric model it is possible to propose more complicated construction where 
dependent variables – number of employed and number of unemployed individuals – depend on each 
other. 
There is set of economic indicators that may affect number of employed and unemployed 
individuals (exogenous variables): rate of unemployment, trend in GDP, GDP delayed and its 
growth rate, final consumption of households (C) and government (G), investments (I), export (Ex), 
import (Im), net foreign trade, inflation and wages. Also delayed endogenous variables are 
incorporated in the analysis: number of employed and unemployed individuals in previous quarter 
in order to deal with possible autocorrelation. 
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1st and 2nd equation: 
 number of employed and unemployed are reciprocal variables (inversely proportional), 
 as unemployment rate grows number employed decreases, 
 as GDP growth rate grows number of unemployed decreases because economy is in its growing 

phase (inversely proportional) and number of employed increases (from previous one-equation 
model it is obvious that relation between GDP and employed or unemployed individuals holds 
but indicator GDP growth rate does not have evidential influence for entire analyzed period), 

 growth of consumption of households, investments, export or net export is connected with 
increase of employment and decrease of unemployment. These variables characterize phase of 
business cycle (growth/recession), 

 as inflation grows number of employed increases (direct proportion) and number of unemployed 
decreases (inversely proportional, Phillips curve economic theory), 

 as wages grow number of employed increases (direct proportion) and number of unemployed 
decreases (inversely proportional) with problematic trend during recession as wages are not 
elastic in case of decline, 

 delayed endogenous variables have positive (directly proportional) effect on actual variable. 
3rd equation: E + U = EA (identity, no unknown parameters are included in this equation) 
 
 
1.7 Econometric Model 
 
Simultaneous dynamic model is composed of three equations. First and second equations are 
stochastic, third is identity. 

y1t = β12 y2t + γ11 x1t + γ13 x3t + γ14 x4t + γ15 x5t + γ16 x6t + γ18 x8t + γ1,11 x11t + γ1,13 x13,t + γ1,15 x15,t + u1t 
y2t = β21 y1t + γ21 x1t + γ22 x2t + γ23 x3t + γ2,10 x10,t + γ2,11 x11,t + γ2,12 x12,t + γ2,13 x13,t + γ2,14 x14,t + γ2,15 x15,t + u2t 

 y3t = y1t + y2t , (3) 
where 
y1 number of employed (E) [000]       Source. CZSO 
y2 number of unemployed (U) [000]      Source. CZSO 
y3 number of economic active (EA) [000]      Source. CZSO 
x1 unit vector 
x2 unemployment rate [%]        Source. CZSO 
x3 GDP, previous year average prices, seasonally adjusted [bn CZK]  Source. CZSO 
x4 final consumption (C) - households [bn CZK]     Source. CZSO 
x5 final consumption (G) - government [bn CZK]     Source. CZSO 
x6 investments [bn CZK]        Source. CZSO 
x7 net foreign trade [bn CZK]       Source. CZSO 
x8 export [bn CZK]        Source. CZSO 
x9 import [bn CZK]        Source. CZSO 
x10 inflation [%]         Source. CZSO 
x11 average gross monthly wage - full time equivalent [000 CZK]   Source. CZSO 
x12 GDP, previous year average prices, seasonally adjusted (t-1) [bn CZK]  Source. CZSO 
x13 number of employed (E) (t-1) [000]      Source. CZSO 
x14 number of unemployed (U) (t-1) [000]      Source. CZSO 
x15 GDP growth rate (quarter-of-quarter) [%]     Source: CZSO 

   (GDP, previous year average prices, seasonally adjusted), own calculation 
(see Appendix A) 
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1.8 Analysis of Correlation 
 
Analysis of correlation shows that large number of selected variables is highly correlated. This 
would cause multicolinearity which degrades model estimates and its further use. Negative effect 
could be eliminated by reduction of model (elimination of some variables) or using absolute or 
relative increments instead of original data. 

y1 y2 y3 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
y1 1,0000 -0,8993 0,8229 -0,9193 0,9452 0,9226 0,8751 0,7488 0,7741 0,8814 0,8833 0,5303 0,8913 0,9557 0,9573 -0,9052 -0,4453
y2 -0,8993 1,0000 -0,4915 0,9988 -0,7881 -0,7074 -0,6179 -0,8344 -0,6342 -0,8127 -0,8355 -0,6762 -0,6575 -0,7862 -0,8374 0,9350 0,2897
y3 0,8229 -0,4915 1,0000 -0,5328 0,8582 0,9180 0,9397 0,4071 0,7175 0,6993 0,6733 0,1774 0,9206 0,8814 0,8183 -0,5877 -0,5104
x2 -0,9193 0,9988 -0,5328 1,0000 -0,8138 -0,7381 -0,6526 -0,8340 -0,6570 -0,8296 -0,8503 -0,6660 -0,6894 -0,8129 -0,8584 0,9400 0,3078
x3 0,9452 -0,7881 0,8582 -0,8138 1,0000 0,9596 0,9313 0,7510 0,8804 0,9424 0,9304 0,5182 0,9073 0,9935 0,9037 -0,7865 -0,3305
x4 0,9226 -0,7074 0,9180 -0,7381 0,9596 1,0000 0,9712 0,6021 0,7667 0,8289 0,8203 0,3714 0,9338 0,9703 0,9279 -0,7782 -0,4458
x5 0,8751 -0,6179 0,9397 -0,6526 0,9313 0,9712 1,0000 0,5084 0,7739 0,7860 0,7654 0,2774 0,9015 0,9381 0,8778 -0,6875 -0,4011
x6 0,7488 -0,8344 0,4071 -0,8340 0,7510 0,6021 0,5084 1,0000 0,5929 0,8271 0,8643 0,6316 0,5787 0,7383 0,6503 -0,7229 -0,2065
x7 0,7741 -0,6342 0,7175 -0,6570 0,8804 0,7667 0,7739 0,5929 1,0000 0,9091 0,8575 0,5864 0,7469 0,8446 0,6947 -0,5642 -0,0498
x8 0,8814 -0,8127 0,6993 -0,8296 0,9424 0,8289 0,7860 0,8271 0,9091 1,0000 0,9939 0,6813 0,8086 0,9164 0,7893 -0,7247 -0,1702
x9 0,8833 -0,8355 0,6733 -0,8503 0,9304 0,8203 0,7654 0,8643 0,8575 0,9939 1,0000 0,6858 0,8005 0,9077 0,7906 -0,7454 -0,1971
x10 0,5303 -0,6762 0,1774 -0,6660 0,5182 0,3714 0,2774 0,6316 0,5864 0,6813 0,6858 1,0000 0,3740 0,4969 0,4410 -0,5656 -0,0561
x11 0,8913 -0,6575 0,9206 -0,6894 0,9073 0,9338 0,9015 0,5787 0,7469 0,8086 0,8005 0,3740 1,0000 0,9263 0,8497 -0,6823 -0,5050
x12 0,9557 -0,7862 0,8814 -0,8129 0,9935 0,9703 0,9381 0,7383 0,8446 0,9164 0,9077 0,4969 0,9263 1,0000 0,9162 -0,8004 -0,4348
x13 0,9573 -0,8374 0,8183 -0,8584 0,9037 0,9279 0,8778 0,6503 0,6947 0,7893 0,7906 0,4410 0,8497 0,9162 1,0000 -0,9276 -0,4276
x14 -0,9052 0,9350 -0,5877 0,9400 -0,7865 -0,7782 -0,6875 -0,7229 -0,5642 -0,7247 -0,7454 -0,5656 -0,6823 -0,8004 -0,9276 1,0000 0,3995
x15 -0,4453 0,2897 -0,5104 0,3078 -0,3305 -0,4458 -0,4011 -0,2065 -0,0498 -0,1702 -0,1971 -0,0561 -0,5050 -0,4348 -0,4276 0,3995 1,0000  

 
Final econometric model: 

y1t = β12 y2t + γ11 x1t + γ16 x6t + γ18 x8t + γ1,11 x11t + γ1,13 x13,t + γ1,15 x15,t + u1t 
y2t = β21 y1t + γ21 x1t + γ2,10 x10,t + γ2,11 x11,t + γ2,13 x13,t + γ2,14 x14,t + γ2,15 x15,t + u2t 

 y3t = y1t + y2t . (4) 
Currently, there are three endogenous and eight predetermined variables, six of them exogenous and 
two of them endogenous delayed (x13, x14). 
 
 
1.9 Estimate by TSLS 
 
Estimate of structural form of simultaneous equations: 

y1t = –0.426 y2t + 2,896.737 x1t – 0.179 x6t +   0.197 x8t +   7.782 x11,t + 0.386 x13,t – 5.116 x15,t + u1t 
y2t = –0.706 y1t +   653.565 x1t – 1.954 x10,t + 3.119 x11,t + 0.571 x13,t + 0.856 x14,t – 4.690 x15,t + u2t 

 y3t = y1t + y2t . (5) 
 
 
1.10 Verification 
 
Economic Verification 
 

1st equation Assumption 
confirmed 

If number of unemployed individuals grows by 1 thousand number of employed decreases by 
426. 

YES 

If investments grow by 1 bn CZK number of employed decreases by 179. NO 
If export grows by 1 bn CZK number of employed increases by 197. YES 
If average monthly wage grows by 1 thousands CZK number of employed increases by 7,782. YES 
If number of employed individuals in previous quarter would grow hypothetically by 1 thousand 
then number of employed individuals in actual quarter is higher by 386. 

YES 

If GDP growth rate grows by 1 percentage point number of employed decreases by 5,116. NO 
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2nd equation Assumption 

confirmed 
If number of employed individuals grows by 1 thousand number of unemployed decreases by 
706. 

YES 

If inflation grows by 1 percentage point number of unemployed decreases by 1,954. YES 
If average monthly wage grows by 1 thousand CZK number of unemployed increases by 3,119. NO 
If number of employed individuals in previous quarter would grow hypothetically by 1 thousand 
then number of unemployed individuals in actual quarter is higher by 571. 

NO 

If number of unemployed individuals in previous quarter would grow hypothetically by 1 
thousand then number of unemployed individuals in actual quarter is higher by 856. 

YES 

If GDP growth rate grows by 1 percentage point number of unemployed decreases by 4,690. YES 
 
Inversely proportional relation between both dependent variable was confirmed (number of 
employed and unemployed individuals have inverse trend). 
1st equation: effect of investments and GDP growth rate was not confirmed and both variables are 
statistically insignificant for trend of employed individuals. Weak impact of investments could be 
explained by delay of reaction of labor market on investments in economy and creation of new job 
positions. GDP growth rate (QoQ) is insignificant as well, similarly to one-equation model: real 
data show that correlation coefficient between number of employed and QoQ GDP growth rate 
based on GDP in real prices and seasonally adjusted is –0.445 although correlation between number 
of employed and GDP itself is +0.945 as expected from theory. This could be explained by long 
period that is analyzed here (28 quarters) and fact that GDP was already modified – seasonally 
adjusted, in real prices whereas labor market shows high level of seasonality. 
2nd equation: number of unemployed individuals is not affected by wages and number of employed 
individuals in previous quarter. There are situations in analyzed 28 quarters when wages grow and 
unemployment grows as well. This was already explained above by low elasticity of wages. This 
variable is also statistically insignificant. Delayed number of employed individuals is statistically 
significant but shows opposite relation than was expected and what suggested correlation 
coefficient (–0.837). This is probably explainable by multicolinearity that is present in model in 
spite of substantial effort of its elimination. 
 
Statistical Verification 
 
Individual t-tests in 1st equation show that constant, number of unemployed, export, wage and 
number of employed individuals in previous quarter are statistically significant variables compared 
to investments and GDP growth rate which are statistically insignificant. 
In 2nd equation there are statistically significant number of employed individuals (both for previous 
and actual quarter), number of unemployed individuals (for previous quarter) and GDP growth rate, 
statistically insignificant are constant, inflation and wage. Compared to one-equation linear 
regression model these results do not correspond. 
 

variable estimate standard error t-value critical value   
y2 -0.426 0.138 3.098

2.080 

* 
x1 2896.737 432.496 6.698 ** 
x6 -0.179 0.299 0.600   
x8 0.197 0.077 2.555 * 
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x11 7.782 3.176 2.451 * 
x13 0.386 0.082 4.697 ** 
x15 -5.116 2.566 1.993   

 
variable estimate standard error t-value critical value   

y1 -0.706 0.184 3.834

2.080 

* 
x1 653.565 924.769 0.707   
x10 -1.954 2.032 0.962   
x11 3.119 4.236 0.736   
x13 0.571 0.129 4.430 ** 
x14 0.856 0.190 4.510 ** 
x15 -4.690 2.100 2.233 * 

 
Index of determination: 1st equation: I2 = 98.60%; 2nd equation: I2 = 97.16% 
Very high indices of determination confirm that estimated econometric model predicts real trend 
and changes in endogenous variables very well.  
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Figure 3: Number of employed – real and predicted time series (CR, 2003/Q1 – 2009/Q4) 
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Figure 4: Number of unemployed – real and predicted time series (CR, 2003/Q1 – 2009/Q4) 

 
 
1.11 Calculation of Reduced Form 
 
Reduced form represents endogenous variables as linear combination of all predetermined variables 
included in simultaneous model without dependencies on other endogenous variables. 
 
y1t =    3,745.331 – 0.256 x6t + 0.282 x8t + 1.192 x10,t + 9.231 x11,t + 0.204 x13,t – 0.522 x14,t – 4.457 x15,t + v1t 
y2t = – 1,989.839 + 0.181 x6t – 0.199 x8t – 2.795 x10,t – 3.396 x11,t + 0.428 x13,t + 1.225 x14,t – 1.545 x15,t + v2t 
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y3t =    1,755.492 – 0.075 x6t + 0.083 x8t – 1.603 x10,t + 5.835 x11,t + 0.631 x13,t + 0.703 x14,t – 6.002 x15,t + v3t 
(6) 

Comparison of estimate of structural and reduced forms of simultaneous equations show that mostly 
are these estimates consistent, i.e. both direction (sign) and intensity correspond. Differences were 
found for average wage in 2nd equation only. 
There are very similar coefficients in third equation as in the first equation because number of 
employed individuals form approximately 93% of economic active people. 
 
 
1.12 Coefficients of Elasticity 
 
Coefficient of elasticity is calculated as percentage change of endogenous variable evoked by 1-
percent increase of selected variable. Sensitive reaction, i.e. elasticity above 1 or under –1 was 
found in second equation for relation between number of unemployed and number of employed 
(both previous and actual value). 
For example: if number of employed grows by 1% number of unemployed decreases by 9.704%. 
 

1st equation elasticity  2nd equation elasticity 
number of unemployed -0.031  number of employed -9.704
investments -0.008  inflation -0.014
export 0.024  wages 0.176
wages 0.032  number of employed (t-1) 7.850
number of employed (t-1) 0.386  number of unemployed (t-1) 0.855
GDP growth rate -0.001  GDP growth rate -0.019

 
1.13 Application of Simultaneous Equations – prediction for 2010 and 2011 
 
One of possible application of reduced form of simultaneous equations is to predict values of 
endogenous variables based on selected scenario for predetermined variables. It could be theoretical 
what-if analysis or prediction of future values. 
Here, real information for 2010/Q1 – 2010/Q3 and prediction for 2010/Q4 – 2011/Q4 were used to 
obtain prediction for E, U and EA for next two years. Quality of such a prediction could be 
evaluated by comparison with real values. 
 

  prediction observations 

  

number of 
employed 

number of 
unemployed

number of 
economic 

active 

number of 
employed 

number of 
unemployed 

number of 
economic 

active 
  000 000 000 000 000 000 

    y1 y2 y3 y1 y2 y3 
2010 Q1 4,886.1 405.1 5,291.3 4,829.2 422.7 5,251.9 

  Q2 4,887.3 410.9 5,298.2 4,880.9 374.7 5,255.6 
  Q3 4,893.0 410.3 5,303.4 4,911.5 374.7 5,286.2 
  Q4 4,897.0 415.4 5,312.4    

2011 Q1 4,891,6 421.3 5,312.9    
  Q2 4,884.9 428.0 5,312.8    
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  Q3 4,882.6 431.5 5,314.1    
  Q4 4,895.7 430.2 5,325.9    

 
Calculation were not able to predict dramatic changes in first quarter of 2010 when number of 
unemployed was the highest and labor market faced serious impacts of crisis. 
 
 
Conclusion 
 
Introduced statistical methods contribute to analysis of labor market, employment and 
unemployment. There were explored various economic indicators as possible effects on number of 
employed and unemployed individuals but only limited amount of them was finally used to estimate 
unknown coefficients in linear regression model and three-equations simultaneous model. 
Results are not consistent between linear regression and TSLS estimates of simultaneous equations. 
Inflation and wage were confirmed as statistically significant in one-equation regression model 
whereas were statistically insignificant in more complex simultaneous econometric model for 
dependent variable number of unemployed. This could be cause by the fact that other variable(s) 
included into simultaneous model were ‘more significant’ (number of employed in previous and 
actual quarter) which confirms extremely high coefficient of elasticity. This also verifies 
assumption that number of employed (E) and unemployed (U) are closely related variables. 
Results of statistical calculations also suggest that some level of multicolinearity still remain in 
model although it was carefully examined. This show how complex and internally related are 
economical variables and reflects difficulties when using real economic data to demonstrate 
economical theories. Further analysis could use other statistical methods (such as factor analysis) 
that could eliminate effect of multicolinearity. 
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EXACT AND QUASI-EXACT CONFIDENCE INTERVALS
FOR THE DIFFERENCE OF TWO BINOMIAL PROPORTIONS

POBOČÍKOVÁ Ivana, (SK)

Abstract. Confidence intervals are often used in clinical trials to compare a new treatment
with a standard treatment. The most commonly used Wald interval performs poorly. In
this paper we consider two exact methods: the Chan-Zhang interval, the Agresti-Min
interval and quasi-exact method: the Chen interval. We compare the performance of the
confidence intervals in terms of the coverage probability and the interval length.
Key words and phrases. binomial distribution, difference of two binomial proportions,
confidence interval, coverage probability, interval length, Chan-Zhang interval, Agresti-
Min interval, Chen interval.
Mathematics Subject Classification. Primary 60A05, 62F25.

1 Introduction

The confidence intervals for the difference of two independent binomial proportions are impor-
tant problem in a biomedical research. Confidence intervals are often used in clinical trials to
compare a new treatment with a standard treatment or placebo. We consider a clinical trial
in which we want to compare the efficacy of a new treatment with a standard treatment. This
situation can be represent with 2 × 2 contingency table

Table 1.

new treatment standard treatment
number of successes X Y
number of failures n1 − X n2 − Y
total n1 n2

where X ∼ Bi(n1, π1) and Y ∼ Bi(n2, π2) be two independent binomial random variables. X
denotes number of successes in n1 independent trials, with the probability of success on a single



Aplimat - Journal of Applied Mathematics

trial π1 (new treatment) and Y denotes number of successes in n2 independent trials, with the
probability of success on a single trial π2 (standard treatment).

Let δ = π1 − π2 is the difference of two independent binomial proportions, −1 < δ < 1. Let
π = π1 and substitute π2 = π − δ. The joint probability mass function can be expressed as

P (X = x, Y = y) =

(
n1

x

)
πx(1 − π)n1−x

(
n2

y

)
(π − δ)y(1 − π + δ)n2−y, (1)

for x = 0, 1, ..., n1, y = 0, 1, ..., n2, πi ∈ (0, 1), ni ∈ N , i = 1, 2.
For any given δ the domain of π is

D(δ) = {π : max{0, δ} ≤ π ≤ min{1, 1 + δ}}. (2)

It is known that π is a nuisance parameter for the inference on δ.
We want to find the 100× (1−α) % two-sided confidence interval 〈δL, δU〉 for the difference

of two independent binomial proportions δ = π1 − π2, where (1 − α) is the desired confidence
level and α ∈ (0, 1).

The literature contains several methods for constructing confidence intervals for the differ-
ence of two independent binomial proportions. The most commonly used confidence interval is
the Wald interval, which is based on the standard normal approximation. The lower and upper
bounds of the 100 × (1 − α) % Wald confidence interval are

δL = (p1 − p2) − k1−α
2

√
p1 (1 − p1)

n1

+
p2 (1 − p2)

n2

,

δU = (p1 − p2) + k1−α
2

√
p1 (1 − p1)

n1

+
p2 (1 − p2)

n2

, (3)

where p1 =
X

n1

, p2 =
Y

n2

are maximum likelihood estimates of parameters π1, π2 and kα is the

α−quantile of standard normal distribution N(0, 1). It is known that this interval performs
poorly (Agresti, Caffo, 2000, Newcombe, 1998).

In this paper we compare the two exact confidence intervals for the difference of two indepen-
dent binomial proportions: the Chan-Zhang interval (Chan and Zhang, 1999), the Agresti-Min
interval (Agresti and Min, 2001) and quasi-exact confidence interval: the Chen interval (Chen,
2002). All these confidence intervals are test based. They are constructed by inverting a
hypothesis test under an appropriate alternative hypothesis.

We compare the performance of the confidence intervals in terms of the coverage probability
and the interval length. We consider the small sample sizes n1, n2 = 5 to 20.

2 Alternatives of the Confidence Intervals

In this section we describe the three alternatives of the confidence intervals for the difference
of two independent binomial proportions compared in this paper.
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2.1 Chan - Zhang interval

The exact Chan-Zhang confidence interval (Chan and Zhang, 1999) is based on inverting two
one-sided tests

H0 : δ = δ0 versus H1 : δ < δ0. (4)

H0 : δ = δ0 versus H1 : δ > δ0. (5)

Chan and Zhang (1999) used for testing (4) and (5) the score test statistic

Z(X, Y, δ0) =
p1 − p2 − δ0√

p̃1 (1 − p̃1)

n1

+
p̃2 (1 − p̃2)

n2

, (6)

where p1 =
X

n1

, p2 =
Y

n2

are maximum likelihood estimates of parameters π1, π2 and p̃1, p̃2 are

maximum likelihood estimates of parameters π1, π2 under the restriction that p̃1 − p̃2 = δ0.

Miettinen, Nurminen (1985) showed that the unique restricted maximum likelihood esti-
mates p̃1, p̃2 can be obtained for given X = x, Y = y by solving the cubic equation

a0π
3 + a1π

2 + a2π + a3 = 0 (7)

for π ∈ 〈max{0, δ0}, min{1, 1+δ0}〉, where a0 = 1+
n2

n1

, a1 = −δ0

(
2 +

n2

n1

)
− x

n1

− y

n1

−n2

n1

−1,

a2 = δ2
0 + δ0

(
2

x

n1

+
n2

n1

+ 1

)
+

x

n1

+
y

n1

and a3 = −δ2
0

x

n1

− δ0
x

n1

.

Thus the restricted maximum likelihood estimates are

p̃1 = 2 u cos(w) − a1

3 a0

, p̃2 = p̃1 − δ0, (8)

where v =

(
a1

3 a0

)3

− a1 a2

6 a2
0

+
a3

2 a0

, u = sgn(v)

√(
a1

3 a0

)2

− a2

3 a0

and w =
1

3

(
π + arcsin

( v

u3

))
.

Chan and Zhang (1999) used the maximization method to eliminate the effect of the nui-
sance parameter π. The exact p−value is maximizing over all possible values of the nuisance
parameters π. At first we invert the hypothesis (4).

For given X = x, Y = y is the exact one-sided p−value for δ0 defined by

βCZU (x, y|Z, δ0) = max
π∈D(δ0)

{
n1∑
i=0

n2∑
j=0

P (X = i, Y = j|δ0, π) I (Z(i, j, δ0) ≤ Z(x, y, δ0))

}
(9)

where I(A ≤ B) =

{
1 if A ≤ B
0 otherwise

is an indicator function.
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The upper bound of the 100 ×
(
1 − α

2

)
% confidence interval (−1, δU〉 for δ is given by

δU = sup
δ
{βCZU (x, y|Z, δ0) ≥ α

2
}. (10)

We obtain similarly the lower bound of the 100×
(
1 − α

2

)
% confidence interval for δ. We

invert the hypothesis (5). For given X = x, Y = y is the exact one-sided p−value for δ0 defined
by

βCZL (x, y|Z, δ0) = max
π∈D(δ0)

{
n1∑
i=0

n2∑
j=0

P (X = i, Y = j|δ0, π) I (Z(i, j, δ0) ≥ Z(x, y, δ0))

}
(11)

where I(A ≥ B) =

{
1 if A ≥ B
0 otherwise

is an indicator function.

The lower bound of the 100 ×
(
1 − α

2

)
% confidence interval 〈δL, 1) for δ is given by

δL = inf
δ
{βCZL (x, y|Z, δ0) ≥ α

2
}. (12)

Therefore the 100 × (1 − α) % Chan-Zhang confidence interval for δ is 〈δL, δU〉.
This exact confidence interval satisfies

P (δL ≤ δ ≤ δU) = 1 − P (δ > δU) − P (δ < δL) ≥ 1 − α. (13)

2.2 Agresti - Min interval

The exact Agresti-Min interval (Agresti and Min, 2001) is similar to the Chan-Zhang interval,
but is based on inverting a two-sided test

H0 : δ = δ0 versus H1 : δ �= δ0. (14)

Agresti and Min (2001) used for testing (14) the score statistic (6).
For given X = x, Y = y is the exact Agresti-Min two-sided p−value for δ0 defined by

βAM (x, y|Z, δ0) = max
π∈D(δ0)

{
n1∑
i=0

n2∑
j=0

P (X = i, Y = j|δ0, π) I (|Z(i, j, δ0)| ≥ |Z(x, y, δ0)|)
}

(15)

where I(|A| ≥ |B|) =

{
1 if |A| ≥ |B|
0 otherwise

is an indicator function.

The lower and upper bounds of the 100× (1−α) % Agresti-Min confidence interval 〈δL, δU〉
for δ are given by

δL = inf
δ
{βAM (x, y|Z, δ0) ≥ α}, δU = sup

δ
{βAM (x, y|Z, δ0) ≥ α}. (16)
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2.3 Chen interval

The Chen quasi-exact confidence interval (Chen, 2002) is based on the approximate p−value.
Chen (2002) approximate the exact p−value (15) by the significance level at one single point,
the maximum likelihood estimates p̃1, p̃2 under the restriction that p̃1 − p̃2 = δ0. Thus he
obtained interval, which is simpler to compute. The approximate Chen p−value is then

βCQ (x, y|Z, δ0) =

n1∑
i=0

n2∑
j=0

P (X = i, Y = j|δ0, p̃1) I (|Z(i, j, δ0)| ≥ |Z(x, y, δ0)|) , (17)

where I(|A| ≥ |B|) =

{
1 if |A| ≥ |B|
0 otherwise

is an indicator function.

The lower and upper bounds of the 100 × (1 − α) % Chen quasi-exact confidence interval
〈δL, δU〉 for δ are given by

δL = inf
δ
{βCQ (x, y|Z, δ0) ≥ α}, δU = sup

δ
{βCQ (x, y|Z, δ0) ≥ α}. (18)

Similarly we can obtain quasi-exact confidence interval from the Chan-Zhang interval.

3 Comparsion of the Confidence Intervals

In this section we demonstrate the performance of the confidence intervals which we compare
in terms of the coverage probability and the interval length. At first we introduce the criteria
for comparing of the confidence intervals.

3.1 Criteria for Comparing of Confidence Intervals

Coverage probability

The coverage probability of the confidence interval 〈δL, δU〉 is for fixed n1, n2 and π1, π2

defined by

Cn1, n2(π1, π2) =

n1∑
x=0

n2∑
y=0

I(x, y, π1, π2)

(
n1

x

)
π1

x (1 − π1)
n1−x

(
n2

y

)
π2

y (1 − π2)
n2−y (19)

where I(x, y, π1, π2) =

{
1 if δ ∈ 〈δU(x, y), δL(x, y)〉
0 otherwise

is an indicator function and δ = π1−π2.

The confidence interval is strict conservative if Cn1, n2(π1, π2) ≥ 1− α for all π1, π2 ∈ (0, 1)
and n1, n2 ∈ N .

Expected length
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Figure 1: Coverage probability of the 95 % confidence intervals for δ = π1 − π2 = 0.1, 0.3, 0.5,
0.7 and (n1, n2) = (5, 15), (10, 10), (10, 20)

The expected length of the confidence interval is defined by

ELn1, n2(π1, π2) =

n1∑
x=0

n2∑
y=0

[δU(x, y) − δL(x, y)]

(
n1

x

)
π1

x (1 − π1)
n1−x

(
n2

y

)
π2

y (1 − π2)
n2−y(20)

where δL(x, y), δU(x, y) are lower and upper bounds of a particular confidence interval.

Average expected length
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The average expected length (AVEL) of the confidence interval is defined by

AV EL(n1, n2) =

1∫
0

1∫
0

ELn1, n2(π1, π2) dπ1 dπ2. (21)
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Figure 2: Expected lengths of the 95 % confidence intervals as a function of π1 for δ = π1−π2 =
0.1, 0.3, 0.5, 0.7 and (n1, n2) = (5, 15), (10, 10) and (10, 20)
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Figure 3: Average expected length of the 95 % confidence intervals for n1 = 5, 10, 15 and 20

3.2 Comparsion of the Performances

To compare the performances of the confidence intervals the coverage probability has been
computed. We consider ten small sample sizes (n1, n2) =(5, 5), (5, 10), (5,15), (5,20), (10, 15),
(10, 20), (15, 15), (15, 20), (20, 20) and α = 0.05. We use a fixed δ approach. We consider fixed
δ = π1 − π2 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. For each pair (n1, n2) the coverage
probability and the expected length has been computed. The calculations were performed in
Matlab.

Figure 1. shows the examples of the coverage probabilities of the 95 % confidence intervals
as a function of π1 for (n1, n2) = (5, 15), (10, 10) and (10, 20) when δ = 0.1, 0.3, 0.5 and 0.7.

The Chan-Zhang interval and the Agresti-Min interval are strict conservative methods.
They guarantees the coverage probability above or equal to the nominal level. The Agresti-
Min interval is less conservative. The coverage probability of the Chen interval fall below the
nominal level, but is close to the nominal level.

The Chen interval is the shortest interval for most cases, the Chan-Zhang interval is the
widest for most cases. In some cases the Agresti-Min interval become wider than the Chan-
Zhang interval, but the Agresti-Min interval is generally shorter than the Chan-Zhang interval.

The average expected length of the Chan-Zhang interval is larger than others interval.

Figure 2. shows the expected lengths of the 95 % confidence intervals as a function of π1 for
δ = π1 − π2 = 0.1, 0.3, 0.5, 0.7 and (n1, n2) = (5, 15), (10, 10) and (10, 20). Figure 3. shows
the average expected lengths of the 95 % confidence intervals for n1 = 5, n1 = 10, n1 = 15 and
n1 = 20.
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4 Concluding Remarks

The better confidence interval is such confidence interval, which coverage probability is close to
the nominal level. The shorter interval and the smaller average expected length are preferred.

When the strict conservatism is a major criterion the Agresti-Min and the Chan-Zhang
interval are a good choice.

The Chen quasi-exact interval is computationally simpler than the exact Chan-Zhang inter-
val and the exact Agresti-Min interval. This interval is the reasonable altervative of the exact
intervals in situation, when a strict conservatism is not required.
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Abstract. Assessing the predictive power of credit scoring models is an important question to 
financial institutions. Because it is impossible to use a scoring model effectively without 
knowing how good it is, quality indexes like Gini, Kolmogorov-Smirnov statisic and 
Information value are used to adress this problem. The paper deals with the Information value, 
which enjoy high popularity in the industry. Commonly it is computed by discretisation of data 
into intervals using deciles. One constraint is required to be met in this case. Number of cases 
have to be nonzero for all intervals. If this constraint is not fulfilled there are some issues to 
solve for preserving reasonable results. To avoid these computational issues, I proposed an 
alternative algorithm for estimating the Information value, named the empirical estimate with 
supervised interval selection. This advanced estimate is based on requirement to have at least k, 
where k is a positive integer, observations of scores of both good and bad clients in each 
considered interval. Simulation study with normally distributed scores shows high dependency 
on choise of the parameter k. If we choose too small value, we get overestimated value of the 
Information value, and vice versa. The quality of the estimate was assessed using MSE. 
According to this criteria, adjusted square root of number of bad clients seems to be a 
reasonable compromise.  
 
Keywords: Credit scoring, Quality indexes, Information value, Empirical estimate, Normaly 
distributed scores 
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1 Introduction 
 

Credit scoring is a set of statistical techniques used to determine whether to extend credit (and 
if so, how much) to a borrower. When performing credit scoring, a creditor will analyze a relevant 
data sample to see what factors have the most effect on credit worthiness. Once these factors and 
their importances are known, a model is developed to calculate a credit score for new applicants. 

Methodology of credit scoring models and some measures of their quality were discussed in 
works like Hand and Henley (1997) or Crook at al. (2007) and books like Anderson (2007), Siddiqi 
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(2006), Thomas et al. (2002) and Thomas (2009). Further remarks connected to credit scoring 
issues can be found there as well. 

Once a scoring model is available, it is natural to ask how good it is. To measure the partial 
processes of a financial institution, especially their components like scoring models or other 
predictive models, it is possible to use quantitative indexes such as Gini index, K-S statisic, Lift, 
Information value and so forth. They can be used for comparison of several developed models at the 
moment of development. It is possible to use them for monitoring the quality of models after the 
deployment into real business as well. See Wilkie (2004) or Siddiqi (2006) for more details. 

The paper deals primarily with the Information value. Commonly it is computed by 
discretisation of data into bins using deciles with requirement on the nonzero number of cases for 
all bins. As an alternative method to the empirical estimates one can use the kernel smoothing 
theory, which allows to estimate unknown densities and consequently, using some numerical 
method for integration, to estimate value of the Information value. See Koláček and Řezáč (2010) 
for more details.  

The main objective of this paper is a description of the empirical estimate with supervised 
interval selection. This advanced estimate is based on requirement to have at least k, where k is a 
positive integer, observations of scores of both good and bad clients in each considered interval. 
Simulation study with normally distributed scores shows high dependency on choise of the 
parameter k. If we choose too small value, we get overestimated value of the Information value, and 
vice versa. The quality of the estimate is assessed using MSE. According to this criteria, I proposed 
a rule for choice of k, which seems to be a reasonable compromise. 

 
 

2 Basic notations 
 

Consider the realization ݏ ∈ Թ of random value ܵ (score) is available for each client. Let ܦ be 
the indicator of good and bad client  

 

ܦ  ൌ ൜
1, 	݀݋݋݃		ݏ݅		ݐ݈݊݁݅ܿ									
0, 	ܾ݀ܽ		ݏ݅		ݐ݈݊݁݅ܿ									

 (1) 

 
and let ܨ଴,   .ଵ denote cumulative distribution functions of score of bad and good clients, i.eܨ
 

 
଴ሺܽሻܨ ൌ ܲሺܵ ൑ ܦ	|	ܽ ൌ 0ሻ,
ଵሺܽሻܨ ൌ ܲሺܵ ൑ ܦ	|	ܽ ൌ 1ሻ, ܽ ∈ Թ. (2) 

 
Aassume ܨ଴, ,ଵ and their corresponding densities ଴݂ܨ ଵ݂ are continuous on	Թ. 

In practice, the empirical distribution functions are used  
 

 
෠଴ሺܽሻܨ ൌ

ଵ

௠
∑ 	ே
௜ୀଵ ௜ݏሺܫ ൑ ܽ ∧ ܦ ൌ 0ሻ

෠ଵሺܽሻܨ ൌ
ଵ

௡
∑ 	ே
௜ୀଵ ௜ݏሺܫ ൑ ܽ ∧ ܦ ൌ 1ሻ, ܽ ∈ ሾܮ, ,ሿܪ

 (3) 

 
where ݏ௜ is the score of ݅-th client, ݊, ݉ are the number of good and bad clients, respectively and 
ܰ ൌ ݊ ൅݉. ܮ is the minimum value of given score, ܪ is the maximum value. Finally, we denote 
஻݌ ൌ

௠

ே
 the proportion of bad clients. 

3 The Information value 
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Very popular quality index, which is based on densities of scores of good and bad clients, is 

the Information value (statisic) defined  as  
 
௩௔௟ܫ  ൌ ׬ 	

∞

ିஶ ூ݂௏ሺݔሻ݀(4) ,ݔ 
 

where  

 ூ݂௏ሺݔሻ ൌ ൫ ଵ݂ሺݔሻ െ ଴݂ሺݔሻ൯ln ቀ
௙భሺ௫ሻ

௙బሺ௫ሻ
ቁ. (5) 

 
Note that the Information value is also called Divergence. See Wilkie (2004), Hand and Henley 
(1997) or Thomas (2009) for more details. The example of ூ݂௏ሺݔሻ for 10% of bad clients with 
଴݂: ܰሺ0,1ሻ and 90% of good clients with ଵ݂: ܰሺ4,2ሻ is illustrated in Figure 1. 

 

 
Figure 1: Contribution to Information value. 

 
However, in practice, the procedure of computation of the Information value can be a little bit 
complicated. Firsty, we don't know the right form of densities ଴݂, ଵ݂ generally and as the second, 
mostly we don't know how to compute the integral. I show some approaches to solve these 
computational problems. 
 
 
3.1 Estimates for normally distributed data 
 

In case of normally distributed data, we know everything what is needed. We just have to 
discriminate between two cases. Firstly, we consider that scores of good and bad clients have 
common variance. In this case we have 
 
௩௔௟ܫ   ൌ  ଶ , (6)ܦ

 
where  ܦ ൌ

ఓ೒ିఓ್
ఙ

 is common ߪ  ௕ are expectations of scores of good and bad clients andߤ ௚ andߤ , 

standard deviation, see Wilkie (2004) for more details. When equality of variances is not 
considered, then in Řezáč (2009) one can find generalized form of ܫ௩௔௟ given by 
 
௩௔௟ܫ  ൌ ሺܣ ൅ 1ሻܦ∗మ ൅ ܣ െ 1, (7) 
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where ܦ∗ ൌ
ఓ೒ିఓ್

ටఙ೒
మାఙ್

మ
ܣ , ൌ ଵ

ଶ
൬
ఙ೒మ

ఙ್
మ ൅

ఙ್
మ

ఙ೒
మ൰, ߪ௚ଶ and ߪ௕

ଶ are variances of scores of good and bad clients. 

The similar formula can be found in Thomas (2009). For a given data, estimation of ܫ௩௔௟ is done by 
replacing theoretical means and variances in (6) or (7) by their appropriate empirical expressions.  

To explore behaviour of the expression (7) it is possible to use tools offered by system Maple. 
See Hřebíček and Řezáč (2008) for more details. An example of usage of the Exploration Assistant 
is given in Figure 2. We can see a quadratic dependence on difference of means in part (a). 
Furthermore, it is clear from (7) that ܫ௩௔௟ takes quite high values when both variances are 
approximately equal and smaller or equal to 1, and that it grows to infinity if ratio of the variances 
tends to infinity or is nearby zero. These properties of ܫ௩௔௟ are illustrated in Figure 2, part (b). 

 

 
(a) (b) 

Figure 2: Maple Exploration Assistant for 3D-plot of  Ival. Dependence of Ival (a) on ࢍࣆ and ࢈ࣆ 

for fixed ࣌ࢍ૛  and ࣌࢈
૛, (b) on  ࣌ࢍ૛  and ࣌࢈

૛ for fixed ࢍࣆ and ࢈ࣆ. 
 
 

3.2 Empirical estimates 
 

The main idea of this chapter is to replace unknown densities by their empirical estimates. 
Let's have ݉ score values ݏ଴೔, ݅ ൌ 1,… ,݉ for bad clients and ݊ score values ݏଵೕ, ݆ ൌ 1,… , ݊ for 

good clients and denote ܮ (resp. ܪ) as the minimum (resp. maximum) of all values. Let's divide the 
interval ሾܮ, ,଴ݍsubintervals ሾ ݎ ሿ up toܪ ,ଵሿݍ ሺݍଵ, ,ଶሿݍ … , ሺݍ௥ିଵ, ଴ݍ ௥ሿ, whereݍ ൌ ܮ െ 1, ௥ݍ ൌ  and ܪ
,୧ݍ ݅ ൌ 1,… , ݎ െ 1 are appropriate quantiles of score of all clients. Set  

 

 
݊଴ೕ ൌ ∑ 	௠

௜ୀଵ ଴೔ݏ൫ܫ ∈ ൫ݍ௝ିଵ, ௝൧൯ݍ

݊ଵೕ ൌ ∑ 	௡
௜ୀଵ ଵ೔ݏ൫ܫ ∈ ൫ݍ௝ିଵ, ݆				,௝൧൯ݍ ൌ 1,… , ݎ

 (8) 
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observed counts of bad or good clients in each interval. Denote መ݂ூ௏ሺ݆ሻ the contribution to the  
information value on jth interval, calculated by  

 መ݂
ூ௏ሺ݆ሻ ൌ ቀ

௡భೕ
௡
െ

௡బೕ
௠
ቁ ln ቆ

௡భೕ௠

௡బೕ௡
ቇ ,			݆ ൌ 1,… ,  (9) .ݎ

 
Then the empirical information value is given by 

መ௩௔௟ܫ  ൌ ∑ መ݂
ூ௏ሺ݆ሻ	

௥
௝ୀଵ . (10) 

 
However in practice, there could occur computational problems. The Information value index 
becomes infinite in cases when some of ݊଴ೕ or ݊ଵೕ are equal to 0. When this arises there are 

numerous practical procedures for preserving finite results. For example one can replace the zero 
entry of numbers of goods or bads by a minimum constant of say 0.0001. Choosing of the number 
of bins is also very important. In the literature and also in many applications in credit scoring, the 
value ݎ ൌ 10 is preferred.   
 
 
3.3 Empirical estimates with supervised interval selection 

 
This approach follows ideas in the previous chapter. Estimation of information value is given 

again by formulas (8) to (10). The main difference lies in construction of the intervals. Because we 
want to avoid zero values of ݊଴ೕ and ݊ଵೕ, I simply looked for such selection of intervals, which 

provides such values ݊଴ೕ and ݊ଵೕ, which are all positive. This will lead to situation when all 

fractions and logarithms in (9) are defined and finite.  
More generally, I propose to require to have at least ݇, where ݇ is a positive integer, 

observations of socres of both good and bad client in each interval, i.e. ݊଴ೕ ൒ ݇ and ݊ଵೕ ൒ ݇ for 

jൌ 1,… ,  Set .ݎ
଴ݍ ൌ L െ 1 

୧ݍ  ൌ F଴
ିଵ෢ ቀ୩∙୧

୫
ቁ	 , ݅ ൌ 1,… , ቔ௠

௞
ቕ (11) 

ቔ೘ݍ
ೖ
ቕାଵ ൌ H, 

 

where F଴
ିଵ෢ ሺ∙ሻ	is the empirical quantile function appropriate to the empirical cumulative distribution 

function of scores of bad clients. ۂݔہ means lower integer part of number ݔ. Usage of quantile 
function of scores of bad clients is motivated by the assumption, that number of bad clients is less 
than number of good clients, which is quite natural assumption. If ݉ is not divisible by ݇, it is 
necessary to adjust our intervals, because we obtain number of scores of bad clients in the last 
interval, which is less than ݇. In this case, we have to merge the last two intervals. This will lead to 
situation, when it holds ݊଴ೕ ൒ ݇ for all computed intervals of scores.  

Furthermore we need to ensure, that the number of scores of good clients is as required in 
each interval. To do so, we compute ݊ଵೕ for all actual intervals. If we obtain ݊ଵೕ ൏ ݇ for jth interval, 

we merge this interval with its neighbor on the right side. This is equivalent with the removal of 
 ୨ାଵ from the sequence of borders of the intervals. This can be done for all intervals except the lastݍ
one. If we have ݊ଵೕ ൏ ݇ for the last interval, than we have to merge it with its neighbor on the left 

side, i.e. we merge the last two intervals. However, this situation is not very probable. If we have a 
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reasonable scoring model, we can assume that good clients have higher scores than bad clients. It 
means that we can expect that the number of scores of good clients is higher than number of scores 
of bad clients in the last interval. Due to construction of the intervals, number of scores of bad 
clients in the last interval is greater than ݇. Thus, it is natural to expect that number of scores of 
good clients in the last interval is also greater than ݇. After all, we obtain ݊଴ೕ ൒ ݇ and ݊ଵೕ ൒ ݇ for 

all created intervals. 
Very important is the choice of ݇. If we choose too small value, we get overestimated value of 

the Information value, and vice versa. As a reasonable compromise seems to be adjusted square root 
of number of bad clients given by  

 
 ݇ ൌ ඃ√݉ඇ, (12) 
 

where ۀݔڿ means upper integer part of number ݔ. 

 Denote መ݂መூ௏ሺ݆ሻ the contribution to the information value on jth interval, calculated by  
 

 መ݂መ
ூ௏ሺ݆ሻ ൌ ቀ

௡భೕ
௡
െ

௡బೕ
௠
ቁ ln ቆ

௡భೕ௠

௡బೕ௡
ቇ ,			݆ ൌ 1,… ,  (13) .ݎ

 
where ݊ଵೕ and ݊଴ೕ correspond to observed counts of good and bad clients in intervals created 

according to the procedure described in this chapter. The empirical information value with 
supervised interval selection is now given by 
 

መመ௩௔௟ܫ  ൌ ∑ 	௥
௝ୀଵ

መ݂መ
ூ௏ሺ݆ሻ. (14) 

 
 

4 Simulation results 
 

It is clear, and it is easy to show that ܫመመ௩௔௟ outperformes ܫመ௩௔௟. However, this chapter is focused 

on properties of ܫመመ௩௔௟ depending on choice of parameter k and depending on proportion of bad clients 
஻ and difference of means of scores of bad and good clients μ୥݌ െ μୠ. Consider 10000 clients, 

100 ∙ :஻% of bad clients with ଴݂݌ ܰሺμୠ, 1ሻ and 100 ∙ ሺ1 െ :௕ሻ% of good clients with ଵ݂݌ ܰሺߤ௚, 1ሻ. 
Set ߤ௕ ൌ 0 and consider ߤ௕ ൌ 0.5, 1	and	1.5, ݌஻ ൌ 0.02, 0.05, 0.1	and	0.2. The case μ୥ െ μୠ ൌ

0.5, i.e. ܫ௩௔௟ ൌ 0.25 in our settings, represents weak, μ୥ െ μୠ ൌ 1 means high and  μ୥ െ μୠ ൌ 1.5 

very high performance of given scoring model. 2% bad rate (݌஻ ൌ 0.02) represents low risk 
portfolio, e.g. mortgages (before current crises). 20% bad represents very high risk portfolio, e.g. 
subprime cash loans. 

Appropriate data sets for simulation was randomly generated 1000 times. Quality of  ܫመመ௩௔௟ was 
assessed using mean squared error given by 

 

ܧܵܯ  ൌ ܧ ൬ቀܫመመ௩௔௟ െ ௩௔௟ቁܫ
ଶ
൰. (15) 

 
Given this measure, denote 
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 ௞ಾೄಶୀ௔௥௚௠௜௡	ெௌா.
௞  (16) 

 
Following Table 1 consists of ݇ெௌா for all considered values of ݌஻ and μ୥ െ μୠ. Proposed values of  

k,  ݇ ൌ ඃ√݉ඇ, are presented in the last row of the table. 
 
Table 1: ࡱࡿࡹ࢑ depending on ࡮࢖ and ૄ܏ െ   .܊ૄ

 
 

We can see that ݇ெௌா is increasing according to ݌஻. This is maybe somewhat surprising, but it is 
quite natural. The increasing ݌஻ means increasing number of bad clients, becasuse the number of all 
clients was fixed to 10000. If we have enough of bad clients, then too small k leads to too many bins 
and consequently to overestimated results. But what is surpricing, it is the dependence on μ୥ െ μୠ. 

While for weak models it is optimal to take very high number of observation in each bin, the 
contrary holds for high perfoming models. Overall, ݇ ൌ ඃ√݉ඇ seems to be a reasonbale 
comprimise. 

For completeness, Table 2 consists of average numbers of bins for all considered values of ݌஻ 
and μ୥ െ μୠ. We can see that they took values from 8 to 127. 

 
Table 2: Average number of bins depending on ࡮࢖ and ૄ܏ െ   .܊ૄ

 
 

The dependece of ܫመመ௩௔௟ on k is illustrated in Figure 3 to 5. The highlighted circles correspond 
to values of k, where minimal value of the MSE is obtained. The diamonds correspond to values of k 
given by (12). 

 

0.02 0.05 0.1 0.2
0.5 29 42 62 84
1 12 18 23 32
	1.5 6 9 8 9

15 23 32 45

0.02 0.05 0.1 0.2
0.5 8,00 13,00 18,00 24,90
1 18,00 28,80 42,76 51,88
	1.5 33,62 50,20 95,96 127,67

avg.	#	of	bins
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(a) (b) 

Figure 3: Dependence of (a) ࡵ෠෠࢜࢒ࢇ and (b) MSE on k, 100000 clients, ૄ܏ െ ܊ૄ ൌ ૙. ૞. 
 

We can see that ܫመመ௩௔௟ is decreasing when k is increasing. In case of μ୥ െ μୠ ൌ 0.5, speed of this 

decrease is very high for small values of k, while it is nearly negligible for values of k higher than 
some critical value. The similar holds for MSE. 

 

 
(a) (b) 

Firuge 4: Dependence of (a) ࡵ෠෠࢜࢒ࢇ and (b) MSE on k, 100000 clients, ૄ܏ െ ܊ૄ ൌ ૚. 
 

When μ୥ െ μୠ ൌ 1, the speed of the decrease is lower compared to the previous case. Furthermore 

MSE is not so flat, especially for ݌஻ ൌ 2%. But what is interesting and important here, our choice 
of k is nearly optimal according to MSE. Moreover, it is valid for all considered values of ݌஻.  
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(a) (b) 

Figure 5: Dependence of (a) ࡵ෠෠࢜࢒ࢇ and (b) MSE on k, 100000 clients, ૄ܏ െ ܊ૄ ൌ ૚. ૞. 
 

Tha last considered difference of means of scores of good and bad clients was μ୥ െ μୠ ൌ 1.5. In 

this case, the speed of the decrease of ܫመመ௩௔௟ is the lowest compared to the previous two cases. The 
novelty, relative to the previous two cases,  is the shape of MSE. Especially for the highest 
considered value of proportion of bad clients, i.e. ݌஻ ൌ 20%, we can see that MSE has really sharp 
minimum. 

Overall, Figure 3 and Figure 4 show that curves of MSE are quite flat nearby its minimum . It 
means that a small deviation of k from ݇ெௌா cause a small change in MSE. On the other hand Figure 
5 shows the strong dependence on choice of k.  
 
 
5 Conclusions 
 

I focused on the Information value and described difficulties of its estimation. The most 
popular method is the empirical estimator using deciles of given score. But it can lead to infinite 
values of ܫ௩௔௟ and so a remedy is necessary. To avoid these difficulties I proposed the adjustment 
for the empirical estimate, called the empirical estimate with supervised interval selection. It is 
based on the assumption that we have at least some positive number of observed scores in each 
interval. This directly leads to situation when all fractions and all logarithms are defined and finite. 
Consequently, ܫ௩௔௟ is defined and finite. 

The simulation study was focused on properties of  ܫመመ௩௔௟ depending on choice of parameter k 
and depending on proportion of bad clients and difference of means of scores of bad and good 

clients. Quality of  ܫመመ௩௔௟ was assessed using mean squared error, which is easy to compute for 
normally distributed scores. Moreover, the optimal value of  ݇ெௌா was computed. 

 It was shown that ݇ெௌா was increasing according to ݌஻. This is maybe somewhat surprising, 
but it is quite natural. The increasing ݌஻ means increasing number of bad clients, becasuse the 
number of all clients was fixed in our case. If we have enough of bad clients, then too small k leads 
to too many bins and consequently to overestimated results. But what was surpricing, it was the 
dependence on μ୥ െ μୠ. While for weak models it is optimal to take very high number of 

observation in each bin, the contrary holds for high perfoming models. Overall, ݇ ൌ ඃ√݉ඇ seems to 
be a reasonbale comprimise. 
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On the other hand, the obtained results open additional possibilities for research. Especially, it 
seems that inclusion of μ୥ െ μୠ, represented by appropriate estimates, to the rule of choise of k 

could lead to significantly better estimates of ܫ௩௔௟ when using the proposed empirical estimate with 
supervised interval selection. 
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Abstract. The paper focuses on the application of coefficients of asymmetric dependence for 
nominal and ordinal variables. Data obtained on the basis of the EU-SILC (European Union – 
Statistics on Income and Living Conditions) survey in 2008 were analyzed. Dependence is 
investigated for pairs of nominal variables (equipment of households with durables and 
household type) and for pairs of ordinal variables (number of rooms, total floor area, financial 
burden of housing costs, and households type where the categories form an ordinal scale). The 
highest values of coefficients were achieved in the dependence of equipment with PC on the 
household type from the viewpoint of the number of working persons and according to the 
status of head of household; higher values were also found in the dependence of equipment with 
a car on the basic household type, the number of rooms and the total floor area on the household 
type from the viewpoint of the number of working persons and according to education level. 
 
Key words. categorical data analysis, contingency tables, nominal variables, ordinal variables 
 
Mathematics Subject Classification:  Primary 62H17, 62H20, 62P20; Secondary 91C99. 

 
 
1 Introduction 
 

One of the series of surveys carried out by the statistical offices of European countries is the 
survey of the statistics on income and living conditions. In 2003 a regulation of the European 
Parliament and the EU Council was passed, which regulates the common framework for this survey 
in European countries. In the Czech Republic the EU-SILC (European Union – Statistics on Income 
and Living Conditions) survey has been carried out since 2005. The aim is to gain an overview of 
the state and development of the social situation of the population. 

The survey focuses mainly on the income distribution of individual types of households, on 
the manner, quality and financial burden of housing, equipment of households with durables and it 
also provides data on the working, material and health conditions of adults, see [1]. In this way 
information valuable for the creation and evaluation of the state social policy is obtained. 
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Through the given survey a great quantity of information is acquired. On the basis of them it 
is possible to investigate various associations and dependences among indicators and either test 
assumed ones or seek out new ones. Some analyses can be also realized on the basis of the tables 
published by the Czech Statistical Office on the Internet (analyses of contingency tables with 
conditional relative frequencies, see [2]). With regard to the fact that the studied indicators are of 
different types it is possible to apply a wide range of statistical methods. 

In this contribution we are focusing on the analysis of the data obtained from the EU-SILC 
survey in 2008. The file purchased from the Czech Statistical Office contains data on 11,294 
households. Our aim was to discover or verify various dependences concerning the characteristics 
of a dwelling and its equipment on the one hand and types of household according to various 
viewpoints on the other hand. 

In some cases it can be expected where the dependence will be weaker and where stronger. 
With regard to the large size of the data file it is also possible to assume that in statistical tests the 
hypothesis of independence will be rejected. For this reason, in the further text we shall deal only 
with investigation of the intensity of dependence. The coefficients calculated on the basis of 
frequencies in a contingency table (or absolute values of these coefficients) usually have values 
from the interval from 0 to 1, however from the dependence aspect even values smaller than 0.5 are 
interesting. 

Some indicators were recoded before the analysis. We were inspired by tables presented on 
the Internet, which in some cases are also created on the basis of recoded indicators – for instance in 
the indicator “number of working persons” it is useful to combine values of 3 or more into one 
category. 
 
 
2 Methods Used for Analyses 
 

From the nature of the type of defined problems it derives that this is an asymmetric 
dependence where the characteristics of the dwelling depend on the household type. If we consider 
a contingency table for two variables then we will suppose that the column variable is dependent. 
We will denote this variable with the letter Y and the explanatory row variable with the letter X. 

The variable X influences statistically on Y if the statistical properties of the variable Y change 
with the changes in categories xi. From the method called analysis of variance it derives that we can 
express the variability of the dependent variable as a sum of two components: the variability 
explained by the variable X (between-group variability) and the residual (unexplained) variability 
(within-group variability). In mathematical notation this association can be expressed as 
 

 )(),()( XYvarXYvarYvar  , (1)
 

where for the expressing of variability var(.) it is necessary to use a measure suitable for the given 
type of dependent variable. 

In the analysis of variance we can calculate the intensity of dependence as a ratio of between-
group variability and total variability which has values in the interval from 0 to 1. This measure is 
usually called as R-square. It can be written as 
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If we calculate this ratio on the basis of a contingency table, then 
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(3)

 

where pi+ is the row marginal frequency and R is the number of rows (i.e. of categories of the row 
variable X). 

In practice measures are used for quantitative and nominal dependent variables. In the first 
case variance is used and the root of R-square is also given; in the second case it is possible to use 
one of the following measures for the variable Y (see also [6]): 

 
a) variation ratio V, which we calculate according to the formula 
 

 V(Y) = 1 – Mop , (4)
 

where p+Mo is the relative frequency of the modal category of the column variable Y, 
 
b) nominal variance G (Gini’s coefficient, measure of mutability), see [3], calculated according to 

the formula 
 

 
G(Y) = 




C

j
jp

1

21 , (5)

 

where C is the number of columns (i.e. of categories of the column variable Y) and p+j is the column 
marginal relative frequency, 
 
c) entropy H, which is for all p+j ≠ 0 given by the formula 
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 (in the case that p+j = 0, the corresponding value for the given j is equal to zero). 
 
By the application of the formula (4) we get Goodman and Kruskal lambda, see [4], i.e. 
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where piMo is the relative frequency of the modal category in the ith row. This coefficient reflects 
only the change of the column category with the greatest frequency in individual rows with regard 
to the category with the highest marginal frequency. If in all rows the highest frequency is in the 
same category as is the modal category for the whole data set, then the coefficient is equal to zero 
and therefore the test for the zero of the coefficient is not carried out. 

 
By the application of the formula (5) we get Goodman and Kruskal tau, see [4], i.e. 
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By the application of the formula (6) we get the uncertainty coefficient, see [5], i.e. 
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In investigating the asymmetric dependence of two ordinal variables we use Somers’ d with 
values from –1 to 1. For its calculation it is necessary to know the number of concordant, discordant 
and tied pairs. If in a pair of objects for one object the values in both variables are smaller (or 
larger) than for the second object, then we denote such a pair as concordant. If in one variable the 
value is smaller and in the other variable bigger, then this is a discordant pair. In other cases (the 
value in one variable or the values in both variables are the same) we speak of tied pairs. 

For the simplification of notations of formulae the following symbols are used: 
 – the number of concordant pairs, 
 – the number of discordant pairs, 
TY – the number of pairs, which contain the same value of the variable Y, but a different value for X. 

Mathematically these numbers can be expressed according to the following formulae: 
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where nij are associated absolute frequencies in the contingency table. Somers' d is calculated 
according to the formula 
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For two dichotomous variables a contingency table has four cells. It is possible to apply the 
coefficients mentioned above. Moreover, the odds ratio can be also used. If we denote the absolute 
frequencies in a table with letters a, b, c and d, then the odds ratio can be expressed as 
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3 Application to Living Condition Survey 
 

We investigated the asymmetric dependences in a series of indicators. With regard to the large 
size of the set, in the statistical tests the hypothesis of independence was rejected in all cases (in 
accordance with the expectation), but the intensity of dependence is generally low. In this part the 
results are given for some analyses in which the values of at least some coefficients are higher than 
0.2, and eventually for comparison also the results of some further analyses. 

We applied measures of dependence for two nominal variables (equipment of households 
with durables and household type) and for two ordinal variables (number of rooms, total floor area, 
financial burden of housing costs, and households type where the categories form an ordinal scale). 

In investigating the dependence of the equipment of the household on the household type we 
focused on durables, i.e. washing machine, color TV, PC, phone (fixed, mobile) and car. The 
indicator has the categories 1 (household has own), 2 (household does not have – cannot afford to 
buy) and 3 (household has not for other reasons/does not want). Because this is a nominal variable, 
for the expression of the intensity of dependence we used the coefficients lambda, tau and the 
uncertainty coefficient, see formulae (7), (8), and (9). 

First we selected the household type according to the number of working persons. In the 
indicator “number of working persons” we combined values of 3 and more in a single category, 
which means that the recoded variable has categories from 0 (no working person) to 3 (3 or more 
working persons). The values of the coefficients appropriate for this type of asymmetric dependence 
are given in Table 1. 

 
Table 1. Dependence of the household equipment on the number of working persons 

 
Durables lambda tau U 
washing machine 0 0.018 0.076 
color TV 0 0.002 0.035 
PC 0.478 0.290 0.218 
phone (fixed, mobile) 0 0.030 0.113 
car 0.144 0.159 0.130 

 
In the case of the washing machine, color TV and phone, for all households the highest 

frequency is for category 1 (subsequently: 96.5 %, 98.8 % and 96.3 %) and also for the individual 
types of household according to working persons the highest frequency is always for this category. 
For this reason coefficient lambda equals zero and the values of coefficient tau and the uncertainty 
coefficient are also very low. 

As far as concerns ownership of PC, then for the whole data set the greatest frequency is for 
category 1 (50%), followed by category 3 (42%). The first category is most frequent for households 
with at least one working person. For households without working persons the highest frequency is 
in category 3 (76%). Of all the items of durables the strongest dependence was found for the 
dependence of equipment with PC on the household type according to working persons. 

A weaker dependence was found for ownership of a car. For the whole set the greatest 
frequency is for category 1 (61.4%), followed by category 3 (27%). The first category is most 
frequent for households with at least one working person. For households without working persons 
the highest frequency is in category 3 (50%). 

We achieved similar results in investigating the equipment with durables in relation to the 
household type according to the status of head of household. Seven categories of household are 



 
 
 

Aplimat – Journal of Applied Mathematics

 

   volume 4 (2011), number3
 
 

356

distinguished, these being 1 (employee with lower education), 2 (self-employed), 3 (employee with 
higher education), 6 (pensioner with working persons), 7 (pensioner without working persons), 8 
(unemployed) and 9 (other household). For the reason of the insignificant dependence of equipment 
with washing machine, color TV and phone is (with regard to the overall majority of the first 
category throughout the data set), we will focus only on ownership of PC and a car. The resulting 
values of the appropriate coefficients are given in Table 2. 

 
Table 2. Dependence of the household equipment on the status of head of household 

 
Durables lambda tau U 
PC 0.487 0.322 0.249 
car 0.153 0.156 0.129 

 
In the case of equipment with PC the first category is not the most frequent only for 

households headed by a pensioner without working persons. In this case the most frequent category 
is 3 (79.6%). In the case of ownership of a car the situation is similar. In this case in households 
headed by a pensioner without working persons the relative row frequencies in category 3 is 52%. 

Similar or higher values of coefficients were further found in investigating the dependence of 
equipment with PC and a car on the household type according to working activity and intensity and 
according to the classification of the EU and OECD. 

A stronger dependence of equipment with a car than with PC was found on the basic 
household type with categories 1 (two-parent nuclear family), 2 (two-parent family with other 
relatives), 3 (lone-parent family with children), 4 (lone-parent family with other relatives with 
children), 7 (non-family household), 8 (individual – male) and 9 (individual – female). The 
resulting values of the appropriate coefficients are given in Table 3. 

 
Table 3. Dependence of the household equipment on the basic household type 

 
Durables lambda tau U 
PC 0.285 0.154 0.123 
car 0.286 0.239 0.194 

 
In the case of the type 7 household in equipment with PC the same frequency was found for 

categories 1 and 3 and the highest frequency for the 3rd category was in households of type 8 (54%) 
and 9 (79%). For the car indicator the highest frequency for the 3rd category was found only in the 
type 9 households (72%). 

Lower values of coefficients were obtained in the case of dependence on the household type 
according to education level with the categories 1 (low level), 2 (medium level – at least one partner 
with secondary education) and 3 (high level – at least one partner with university education), see 
Table 4. 

 
Table 4. Dependence of the household equipment on the household type according to education level 

 
Durables lambda tau U 
PC 0.145 0.097 0.083 
car 0.114 0.074 0.059 
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Both in the case of the PC and of the car the highest frequency for the 3rd category was in the 
household type with a low level of education (76.2% and 60.1%). 

We also investigated the dependence of the number of rooms on the ordinal indicators 
concerning the household. We recoded the indicator for the number of rooms to the values 1, 2, 3 
and 4 (meaning 4 or more). In investigating the dependence on the number of working persons it 
was found that in households with no or with one working person there were mainly 3-room 
apartment, whereas for households with two, three and more working persons mainly had four or 
more rooms. The value of Somers’ d in this case is 0.259, which, although it is a lower dependence, 
is one that is worthy of notice. In investigating the dependence of the number of rooms on the 
household type from the viewpoint of education level it was found that the households with the 
lowest education level most often have two rooms, households with medium education have three 
rooms and the households with the highest level of education then have 4 or more rooms. In this 
case the value of Somers’ d is 0.206. 

In investigating the dependence of the total floor area, very similar results were obtained 
according to the above-mentioned ordinal indicators concerning households. The indicator of floor 
area was recoded for these purposes to the values 1 (40 m2 or less), 2 (40–60 m2), 3 (60–80 m2) and 
4 (more than 80 m2). In investigating the dependence of this indicator on the number of working 
persons it was found that in households with no working person the prevalent floor area is 40–60 
m2, in households with one working person the usual floor area is 60–80 m2 and in households with 
three, four or more such members the floor area is greater. The value of Somers’ d in this case is 
0.252, which, although it is again a weaker dependence, is one that is worthy of notice. In 
investigating the dependence of the floor area on the household type from the viewpoint of 
education level it was found that the households with the lowest level of education most often have 
40–60 m2, households with medium education have 60–80 m2 and the households with the highest 
education level then have more than 80 m2. In this case the value of Somers’ d is 0.209. 

An example of another ordinal variable is the indicator “housing costs in terms of financial 
burden” with categories 1 (large burden), 2 (a certain burden) and 3 (no burden). Overall category 2 
is prevalent, being the most frequent category also in the individual categories of household. The 
value of Somers’ d in the case of the dependence on households according to the number of 
working persons is 0.077 and in the case of the dependence on households according to education 
level it is 0.17. 

For the purpose of comparison, we also investigated the dependence of quantitative 
continuous variables (original value of floor area in m2, housing costs and their individual items) on 
the household type with the use of R-square, see formula (2) or its root (coefficient eta). The values 
of coefficient eta indicate a weaker dependence. The highest values were found in the dependence 
on the household type according to the number of working persons, these being for total housing 
costs (0.336), followed by the cost of electricity (0.289), floor area (0.282) and the cost of water 
supply (0.274). There are somewhat lower costs when investigating these indicators for the 
household type according to education level: for total housing costs 0.221, followed by costs of 
other utilities with 0.19 and floor area with 0.176. 

We obtained some interesting results by using the odds ratio, concerning dependences on the 
sex of the household head. In the case of independence the value of the odds ratio is one. This 
measure expresses a chance for a certain event (a category of a column variable) in dependence on 
categories of a row variable. If a man is a head of household, then the household has more than 2.5 
times greater chance to go for an annual one-week holiday in comparison with a household with a 
woman as a head. In a case of unexpected outlay of CZK 7500 this chance is more than 3 times 
greater in comparison of men and women as heads of household. 
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4 Conclusion  
 
Through analysis of the data from the EU-SILC survey in 2008 interesting dependences were 

found concerning the dependence of equipment with PC on the household type from the viewpoint 
of the number of working persons and according to status of head of household, ownership of a car 
on the basic household type, further the number of rooms and the total floor area on the household 
type from the viewpoint of the number of working persons and according to education level. 

In our further research we plan to focus on modeling the dependences of categorical 
indicators with the use of logistic regression, see [7] for modeling the dependences on the basis of 
the survey in 2006. 
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ON COMPARISON OF UNIVARIATE
FORECASTING METHODS:

THE CASE OF LATVIAN RESIDENTIAL PROPERTY PRICES

SINENKO Nadezhda, (LV) VALEINIS Janis, (LV)

Abstract. This paper investigates the forecasting ability of different univariate forecasting
techniques (local regressions, unobserved component model), compared with the standard
ARIMA approach. A forecasting exercise is carried out with each method, using monthly
price time series on residential property prices in Latvia. The accuracy of the different
methods is assessed by comparing several measures of forecasting performance based on
the out-of-sample predictions for various horizons.
Key words and phrases. Unobserved components model; ARIMA models; Forecasting
comparison; local linear regression.
Mathematics Subject Classification. Primary 91B84, 62M10; Secondary 62G08.

1 Introduction

The presence of a turning point at the end of a sample introduces a degree of uncertainty in
econometric forecasting. Deterministic trend-based forecasting strategies are not relevant in
this case. Cointegration relationship also may seem to be broken thus not providing a solid
basis for making projections of future paths of economic variables. Uncertainty about the future
behavior of exogenous variables due to turn in economic cycle makes it difficult to use traditional
multivariate forecasting methods. In this case univariate forecasting techniques may serve as
an additional work aid. The purpose of the article is to investigate the forecasting performance
of several univariate modelling methods (unobserved component model, local regressions and
traditional ARIMA models) applied to Latvian residential property prices.

The development of real estate prices serves as an important economic indicator, closely
connected to economic and credit cycles. As the behavior of the property prices influences
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the performance of the whole financial system, the forecasting of its future developments is an
important task. Over the last decade Latvian residential property prices experienced dramatic
changes. Joining the European Union in 2004 provided access to cheap credits. The economic
boom that followed the EU accession led to growing wages and therefore the demand for real
estate and affordability of the loans for house purchase increased ([1]). Credit and property
prices grew in mutually reinforcing manner, producing a speculative real estate price bubble,
which burst in April 2007. The price drop on the real estate market coincided with a severe
downturn in economic activity in Latvia, which was reinforced by the world-wide financial and
economic crises. During 2007 - 2009 Latvian residential property prices fell by more than 70%.
After hitting the bottom in the summer of 2009, the prices exhibited moderate growth. The
idea of the exercise appeared at the end of 2009, when future prospects of the developments
of the property prices were highly uncertain and the deep recession made the forecasting of
the fundamental determinants of property prices comlicated for relatively long time horizons.
Different classes of univariate models were fitted to residential property price time series on the
estimation sample from January 1999 to December 2009 and 12 months ahead forecasts were
produced. Now, when 10 of 12 actual values of property prices time series for 2010 are already
known, the precision of forecasts could be accessed.

The paper is organised as follows: Section 2 describes the theoretical UC model based
on simple Integrated Random Walk model for the trend and results, obtained employing this
model, including some modifications. Section 3 and Section 4 describe the nonparametric
regression methods and benchmark ARIMA class models, respectively. Section 5 analyses
the predictive performance of our models for Latvian residential property prices. Section 6
concludes.

2 Forecasts based on structural time series model

One of the popular ways of modelling time series is a structural time series model, which is
set in terms of components having a direct economic interpretation. In the most common form
additive structural model has the folowing form

yt = Tt + Ct + St + εt, t = 1, . . . , T, (1)

where Tt - trend, Ct - cyclical, St - seasonal, εt - irregular component. Typically the irregular
component is assumed to be white noise with zero mean and variance σ2

ε . In some cases (like
in [3]) the cyclical component is dropped and cyclical movements are incorporated into trend
component. The new framework elaborated for structural models by Harvey (see e.g. [4], [5])
made the models more flexible, in particular, by letting the level and slope parameters of trend
to change over time. Harvey and Jaeger in [5] proposed to fit trend as

Tt = Tt−1 + Dt−1 + ζt, ζt ∼ NID(0, σ2
ζ ), (2)

Dt = Dt−1 + ηt, ηt ∼ NID(0, σ2
η), (3)

where Dt is the slope and the normal white noise disturbances ζ and η are independent of
each other. In case σ2

η = 0, the formula (2) reduces to random walk with drift and if, in
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addition, σ2
ζ = 0, it reduces to deterministic linear time trend; the case when σ2

ζ = 0 and
σ2

η �= 0 corresponds to integrated random walk (IRW). So, the proposed way of modelling
time trend allows for time-varying parameters and incorporates possibilities of random walk
and linear trend as limiting cases. The key idea of Harvey (see [4]) was to handle structural
models in the state space form with the state of the system representing the various unobserved
components such as trends and cycles. The forecast in this type of structural time series
model are constructed automatically by the Kalman filter. The trend and other unobservables
are extracted by a smoothing algorithm. The parameters, which govern the evolution of the
observed series, are estimated by maximum likelihood, again using the Kalman filter. Thus
the whole model is handled within a unified statistical framework, which produces optimal
estimates with well defined properties.

3 Empirical results

As Latvian residential property prices time series exhibits no seasonal variation, the seasonality
term in equation (1) was omitted and a cycle was incorporated into the trend-cycle component
(2) - (3), for which integrated random walk specification was chosen. IRW model is known to
be particularly useful for describing large smooth changes in the trend ([2]).

In classical Kalman filter framework our model has the following representation: the state
equation

ξt+1 = Fξt + νt+1 (4)

and the observation equation
yt = H ′ξt + εt,

where

ξt =

(
Tt

Dt

)
, F =

(
1 1
0 1

)
, H =

(
1
0

)
, νt =

(
0
ηt

)
.

The model appears to be very simple and parsimonious with the only unknown parameter - σ2
η.

Following Garcia-Ferrer and Queralt [2], we will call the slope component Dt a trend derivative.
Estimation of the parameters and extracting of the components was carried out by the

means of econometric package EViews7. The estimated trend and the trend derivative are
shown on Figure 1.

Garcia-Ferre and Queralt (see [2]) argues, that the trend derivative can be used as a device
for anticipating peaks and troughs, in particular, when the derivative reaches its maximum
value, the recession is to be expected, and the recession is confirmed, when the derivative
becomes negative. Indeed, also in our case the peaks in derivative precedes the turning points
in the levels of time series for some 2-3 months and thus can serve to improve quantitative
forecasts in the vicinity of turning points.

The trend prediction in the IRW trend model is a straight line with a constant slope equal
to the last value of the derivative. This seems to be a rather restrictive and conservative
assumption given the evolution of the derivative through time. Two alternatives seem to be
open: (1) propose different (more flexible) trend model, like Smooth Random Walk (SRW)
or Double Integrated Autoregressive model (DIAR); and (2) direct modelling of IRW trend
derivative and obtaining forecasts from its univariate model, as proposed in [2]. We have left
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(a) (b)

Figure 1: Estimated trend (a) and trend derivative (b) for Latvian residential property prices during January
1999 - October 2010.

the first alternative for further research and followed Garcia-Ferre identifying and estimating
corresponding ARIMA models for the trend derivative. The two alternatives, suggested by
the inspection of ACF, PACF and the analysis of unit root tests are AR(3) model with one
root close to unity (“quasi-stationary”) and non-stationary ARI(2,1) model. Therefore both
competing models are rather close. Despite this fact, the forecasts, produced by the above
models are rather different (see Figure 2 and Tables 2 and 3). In the following, we will call
both model “modified structural models” and refer in tables as UC AR(3) and UC ARI(2,1)
(unobserved component model with trend derivative forecasted by AR(3) and ARI(2,1) models
correspondingly).

4 Forecasts based on the local linear smoothing method

For the time series observations y1, y2, . . . , yT consider the commonly used kernel regression
estimator introduced by Nadaraya [6] and Watson [7] defined by

T̂t0 =

∑T
t=1 ytK( t−t0

h
)∑T

i=1 K( t−t0
h

)
,

where Tt0 denotes the trend function at a fixed timepoint t0, K is a kernel function and h - the
bandwidth parameter. It is well known that this method has a big drawback - it has the so
called design bias (see, for example, [8] or [9]). This issue is more pronounced at the boundary
regions, therefore this method is not quite suitable for the forecasting purposes.

The local linear smoothing is another nonparametric regression method, which minimizes
the following expression

T∑
i=1

{yi − a − b(i − t)}2Kh(i − t),

with respect to a and b. Denote by ât and b̂t the least-squares solutions, where the subscript
t is used to indicate that the solution depends on the given timepoint t. Then Tt is estimated
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by the local intercept ât, which admits the explicit expression

T̂t = â =

∑T
i=1 wt,iyi∑T
i=1 wt,i

,

where
wt,i = Kh(i − t){ST,2(t) − (i − t)ST,i(t)}

and

ST,j =
T∑

i=1

Kh(i − t)(i − t)j.

It can be shown that using the local linear smoothing method the design bias vanishes, thus
it improves over the usual Nadaraya-Watson kernel regression estimator. It is also possible to
consider more general local polynomial fitting methods described by [9] in details. However,
practically the local linear smoothers are used most commonly.

We have implemented the nonparametric regression smoothers in program R. It is well
known that the kernel choice is not essential, thus we choose the standard Gaussian kernel.
However, the smoothing parameter or the bandwidth choice is crucial. There exist many
methods for the bandwidth selection which roughly can be divided into cross-validation and
plug-in methods. Moreover, for the time-domain smoothing due to the local dependence the
bandwidth selectors for independent samples do not work well (see, for example, Section 6
in [8]). Therefore for the comparison we examined several built-in automatic methods for
bandwidth selection such as 1) cross-validation (sm.regression command choosing the method
cv); 2) plug-in method (command dpill) and 3) iterative method based on autoregressive
regresion errors (command sm.regression.autocor). In all cases we obtain similar results,
that is, h = {2.39; 1.23; 1.14}, respectively. The reason may be very simple: the time series
data are already quite smooth. Therefore we present here (see Section 6) only the forecasts
using the plug-in method (command dpill which works under the package KernSmooth).

5 Forecasting based on ARIMA models

It has become common to use the best-fitting ARIMA class model (see [10]) as a benchmark,
investigating the performance of different class models. The graph of Latvian residential prop-
erty prices time series and the correlogram of levels are suggestive of non-stationary process,
which was supported by the results of unit root tests (ADF and KPSS tests results both confirm
I(1) process). That’s why we were looking for the best model among the class of Integrated
models of first order (ARMA models for first differences). ACF and PACF properties of dif-
ferenced series were used to select the orders of autoregressive and moving average polinomials
of the models, which were then estimated by maximum likelihood. Taking into account Akaike
(AIC) and Schwartz Bayesian (BIC) information criteria, the best models from this class on the
considered observation sample from January 1999 to December 2009 appeared to be ARI(2,1)
and ARIMA(1,1,1) (both fitted to logs of dependant variable) with the impulse dummies for
periods 2005M1 and 2009M2. Estimated equations have the following form:

dln(yt) = 0.14d2005m1 − 0.11d2009m2 + 0.37(dln(yt−1) + dln(yt−2)), (5)
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dln(yt) = 0.12d2005m1 − 0.08d2009m2 + 0.87dln(yt−1) − 0.37ε̂t−1. (6)

All estimated parameters are significant on 1% significance level. Both dummies serve to fix
outliers in residuals. Positive shock in January of 2005 is connected with the change of the
peg of Latvian currency - Lats from SDR currency basket to euro. Prior to 2005 property
prices were denominated in USD, and the change to euro was used by property owners to rise
the prices. The negative shock in February of 2009 was caused by the negative trends in real
economy, which accelerated fall in property prices.

According to the both information criteria, ARI(2,1) is slightly superior to ARIMA(1,1,1)
due to more parsimonious specification (see Table 1).The residual tests (for autocorrelation,
normality and heteroscedasticity, not shown to save the space) revealed good statistical prop-
erties of both models ((5) and (6)).

Table 1: The values of Information criteria for the ARI(2,1) and ARIMA(1,1,1) models.

Model ARI(2,1) ARIMA(1,1,1)
AIC -4.48 -4.38
SBC -4.40 -4.29

Fitted ARIMA models (5) and (6) were employed to forecast the values of property prices
series for a year ahead (January to December 2010). The forecasting results are shown and
discussed in the next section.

6 Forecasting results

To compare the forecasting performance of different models, all the models were estimated,
using data only from estimation set (from January 1999 to December 2009). Then the estimated
models were used to predict next 12 values (from January 2010 to December 2010). Figure
2 shows forecasts produced by the models and actual values of data series, which are already
known (from January 2010 to October 2010).

To access accuracy of forecasts, we used two measures MSE and MAPE, based on prediction
errors εt, that is

et = yt − ŷt,

where yt - the observed value from the test set and ŷt - the forecast for the time moment t,
based on the values from estimation set. The predictive mean squared error (MSE) uses
squared residuals,

MSE =

∑n
t=1 e2

t

n
,

where n is a number of forecasts. The mean absolute percentage error (MAPE) considers
the relative absolute error of each forecast,

MAPE =

∑n
t=1 | et

yt
|

n
.

Tables 2 and 3 show the calculated measures for different models.
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Figure 2: Different forecasts based on previously described methods together with the actual values of the
data series.

Table 2: Forecast MSE for horizons 1-10.

period lin.local regr Kernel regr. ARI(2,1) ARIMA(1,1,1) UC AR(3) UC ARI(2,1)
2010M01 1.25 116.41 4.57 5.50 4.34 4.34
2010M02 20.85 91.93 6.11 10.18 11.54 13.03
2010M03 1.98 304.22 3.08 0.05 0.11 0.26
2010M04 5.74 456.86 6.69 0.02 0.25 2.18
2010M05 7.59 683.90 21.12 0.44 3.78 2.93
2010M06 55.21 717.28 8.35 5.59 0.11 38.22
2010M07 116.31 832.54 8.81 13.17 0.62 86.08
2010M08 201.62 957.49 11.45 20.85 0.79 153.71
2010M09 448.05 871.90 0.32 76.01 17.59 362.82
2010M10 607.41 1000.55 2.21 82.55 13.86 492.44

MSE 146.60 603.31 7.27 21.44 5.30 115.60

Table 3: Forecast MAPE (in %) for horizons 1-10.

period lin.local regr Kernel regr. ARI(2,1) ARIMA(1,1,1) UC AR(3) UC ARI(2,1)
2010M01 0.29 2.79 0.55 0.61 0.54 0.54
2010M02 1.18 2.48 0.64 0.83 0.88 0.93
2010M03 0.36 4.42 0.44 0.05 0.08 0.13
2010M04 0.60 5.35 0.65 0.03 0.12 0.37
2010M05 0.68 6.47 1.14 0.16 0.48 0.42
2010M06 1.84 6.62 0.71 0.58 0.08 1.53
2010M07 2.65 7.09 0.73 0.89 0.19 2.28
2010M08 3.47 7.57 0.83 1.12 0.22 3.03
2010M09 5.19 7.24 0.14 2.14 1.03 4.67
2010M10 6.02 7.72 0.36 2.22 0.91 5.42
MAPE 2.23 5.77 0.62 0.86 0.45 1.93
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Tables 2 and 3 show that the overall modified structural model with AR(3) process for
trend derivative performs the best according to the both criteria. The forecasts from ARIMA
models also are fairly close to actual data; ARI(2) seems to be the second best. The linear local
regression smoother captured well the slope for the beginning of the test sample: forecasts for
the first 5 months are accurate, but the deviation is rather big for the rest of the test sample.
Surprisingly, but the forecasts from the modified structural model with ARI(2,1) differ very
much from the first structural model, despite the fact that actually the two models for the slope
are rather close. However, those results show the improvement compared to the structural model
with a pure random walk slope (not shown due to big deviations from actual series and other
forecasts: forecasted value for October 2010 was 475, much worse than local linear regression).
Nadaraya-Watson method also was not a success. So, forecasting fairly smooth time series
after the turning point, usage of the local linear regression can be recommended only for short
time horizons. ARIMA models performed fairly well for all horizons (1-10) with MAPE not
exceeding 0.62%. The performance of the modified structural model crucially depends on the
choice of the model for forecasting trend derivative.

7 Conclusions

In this paper we investigated the forecasting ability of different univariate forecasting techniques
(local regressions, modified structural model, standard ARIMA approach). A forecasting exam-
ple was carried out with each method, using monthly price time series on residential property
prices in Latvia, which has recently experienced turn in the trend. The accuracy of the different
methods was assessed by comparing the forecasts MSE and MAPE based on the out-of-sample
predictions for 10 horizons. The modified structural model with AR(3) process for trend deriva-
tive performed the best according to the both criteria, with MAPE less than 0.5%. ARIMA
models performed fairly well for all horizons (1-10) with MAPE not exceeding 0.62% and the
local linear regression gave accurate forecasts for short horizons (up to 5). Nadaraya-Watson
method didn’t look suitable for this example. But it should be mentioned that the results from
the modified structural model should be interpreted with caution, as another specification for
trend derivative yielded much worse results. This feature of the model calls for the further
investigation. In particular, more flexible trend characterisations (like smoothed random walk
or dependences of orders higher than one) seems an important area for future research.
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Abstract.  Encouraging and supporting people to start their own business are one of the 
important government measurements towards to the GDP growth.  It is necessary for the 
success of this policy to identify the types of people who are willing to start a business as 
independent entrepreneurs, or run it in the form of license and establish a business based on a 
franchise system. The research was conducted in order to clearly identify and classify these 
people and to outline their main characteristics important for future effective franchise systems 
promotion. A survey on the willingness to start a business in the form of a franchise license was 
conducted with the usage of questionnaires and different methods of classification were chosen. 
Two of the algorithms for classification trees – CART and CHAID were used for its evaluation 
from the group of supervised learning methods. From the group of unsupervised learning 
methods the two–step cluster analysis was chosen. This paper analyzes the results obtained 
using these methods. It aims to create classes of respondents with similar opinions on 
entrepreneurship and franchising, as well as to classify respondents in terms of their willingness 
to start a business and opinions on investment possibilities in a business context. The survey 
showed that franchising might be a matter of change and new hope for many people.    
  
Key words. classification, decision tree, cluster analysis, starting business, franchising 
 
Mathematics Subject Classification:  91B06, 90B50. 

 
 
1 Introduction 
 
The franchise model of doing business is regarded as the less risky option of starting a business. 
The research on willingness to start one´s own business, both with franchise and regular concept, 
was conducted in the form of questionnaire surveys realized in the Czech Republic by the team of 
the Faculty of Social and Economic Studies (FSE) in Ústí nad Labem  in 2008 – 2009. The aim of 
the research was to identify the segment of the population which is most likely to start their own 
business. According to the description of characteristics for this group the proper measures for 
investment incentives can be taken. The questionnaire research was conducted in order to determine 
public awareness of the franchise; find out the views and attitudes towards the franchise system; 
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explore the willingness to start a business; and collect enough information to be able to suggest 
some measures for effective communication on the franchise system – the presentation of the 
franchise as a promising way of doing business. 
Unfortunately, the traditional basic statistic methods led to unsatisfactory outputs so that the 
methods of classification by the support of cluster analysis and decision tree methods were chosen. 
This contribution deals with the analysis results gained by means of those two methods. 
 
 
2 Methodology 
 
This contribution deals with the classification of two basic ways of learning – namely supervised 
learning and unsupervised learning. In the first case the decision rules for assigning objects to the 
groups are created according to the training set. The decision trees are representatives of this group 
of methods. In the second case the selected objective function due to its minimization divides 
objects into categories, so that the objects belonging to one category are more similar to each other 
than data from different categories. Cluster analysis belongs to this group. 
 
2.1 Cluster Analysis 

 
Cluster analysis, see [1], [3], deals with data objects similarity. It solves the set of objects splitting 
into several previously non-specified groups (clusters) so that the objects in the single clusters are 
the most similar to each other as possible and the objects outside of the different clusters should be 
the least similar as less as possible. Cluster analysis can be realized by many different methods.  
The statistical program systems usually include both the hierarchical algorithm result which is 
usually displayed in the form of a dendogram and non hierarchical iterative algorithm k-means and 
very often also a two-way joining. In the statistical system SPSS there is a two-step method 
implemented starting at the 11.5 version. 
The choice of a hierarchical method was not suitable for this survey due to the relatively large 
number of subjects. The algorithm k-means is designed for a clustering of objects which are 
described with the use of quantitative variables and it was not the case on this research. The usage 
of this method would require pre-proceeding the data with the help of binarization; it means that 
each variable transfers into several binary variables (the variable of the value 0 and 1). The most 
suitable method for data proceeding in this survey seems to be the two-step method.  
The principles of the two-step cluster method are described for example in [2]. This method uses 
the algorithm of BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies), which is 
explained in more detail in [6], or [7]. The algorithm creates a so-called CF-tree, which is 
progressively fulfilled by incoming data. The advantage of this principle is that it goes through the 
data file only once. The disadvantage is the sensitivity for the entry data ordering. 
CF-trees work with so-called CF-characteristic – Clustering Feature of the cluster. Data collected in 
CF-characteristic are sufficient for the calculation of centroids, inter-group proximity measures and 
compactness of clusters. This characteristic creates an organized triad of CF = (N, LS, SS), where N 
means the number of objects in a cluster, LS represents a vector sum of all cluster objects and SS 
states these objects Square coordinates, e.g.  
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CF-trees are highly balanced trees of two parameters. The first parameter is the threshold P and the 
second one is the branching factor (F, L). Each internal node of CF-tree applies in that it contains 
maximally F descents. The task of the internal nodes is to allow the finding of the proper leaf for 
new subject categorisation. Each leaf contains maximally L entries. Every leaf node represents 
a cluster created by all the sub-clusters constituted by the single entries of the leaf. However, the 
threshold rule has to be valid for every leaf entry that the entry radius is smaller than thereshold P.  
The clustering algorithm is realized in three main phases. In the first phase the CF-tree is created 
and the entering objects are progressively organized. In the second phase the CF-tree is condensated 
and optimalized due to its threshold adjustment and with the help of the proper tree re-designing the 
outliers is eliminated. In the third phase the impact of entry data order sensitivity is minimized.  The 
algorithm clusters together with the leave´s tops using the agglomerative hierarchy cluster 
algorithm.  
 
2.2 Decision Trees 
 
Various types of decision trees are widely used in data models. The decision trees can be regarded 
as the structures which recursively separate surveyed data according to certain decision criteria. The 
root represents all of population file. The inner nodes demonstrate the sub-systems of the population 
set.  The values of dependent variable are explained in the tree leaves. Two types of decision trees 
have been used: the classification trees (every leaf contains a category) and regression trees (every 
leaf contains a constant – the estimation of dependent variable).  
The decision tree has been recursively created by space division of independent variable values and 
has been based on searching the question (splitting condition), which is the best of all for dividing 
the surveyed data space into sub-sets, it means which one maximizes the splitting criterium. The 
splitting procedure is finished as soon as the cessation rule is reached. There are two possible ways 
to set up the quality of generated tree: the system of training and test data and the other way is the 
cross validation.  
A large number of algorithms was developed for the decision trees creation. CART, ID3, C4.5, 
AID, CHAID and QUEST algorithms are the most frequent ones, see [8]. This contribution treats 
with two algorithm types implemented in the statistical system – CART and CHAID.  

 
2.2.1 Algorithm CART 
 
This algorithm was originally described by its authors Breiman, Freidman, Olshen and Stone in 
1984 in the article „Classification and Regression trees“. The algorithm (see [4], [5]) can be 
applicable in the case that there are one or more independent variables. These variables can be 
continuous or categorical (both ordinal and nominal). There is also one dependent variable, which 
can be also categorical (both ordinal and nominal) or continuous. 
Because only YES/NO questions (condition of splitting) are permitted, the algorithm result can be 
composed only in the form of the binary tree (it means that every node is divided into two child 
nodes). In every algorithm step the algorithm goes through all potential splitting with the help of all 
permissible values of all variables and the best solution is searched for. The increasing of data 
purity serves as the measurement.  It means that one splitting is better than the other one if two 
more homogenous (according to independent variables) data files are acquired compared to another 
way of splitting. Algorithm splitting differs for classification trees and for regression trees. 
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The child node homogeneity is in the case of the classification trees measured by the impurity 
function i(t). The maximal homogeneity of two newly built child nodes is constructed as the 
maximal purity reduction i(t).  

 ))(()()( dr tiEtiti  , (2)

where tr represents parent node, td is the child node. In order to set up the child node tp, the 
probability of child node Pp and the left child node tl, the probability of the left child node Pl  the 
expected value formula should be supplied as follows: 

 )()()()( ppllr tiPtiPtiti  . (3)

For each node the CART algorithm solves the maximization problem for the i(t) function going 
through all the potential splitting. The i(t) function can be defined in different ways. The most 
frequent is the Gini index method.  
The regression trees are used in the case when the dependent variable is not categorical. The 
algorithm searches for the best splitting based on the sum of variance minimizing in the terms of 
two newly built child nodes in this case.  This algorithm works on the basis of the algorithm of 
minimizing the sum of squares. 
 
2.2.2 CHAID Method 

 
The method of CHAID (Chi-squared Automatic Interaction Detector) was developed in 1980 by 
G.V. Kass. This method, see [5], has arisen by the modification of the AID method for categorical 
dependent variable. The non-binary trees can be regarded as a result of this modification. The 
method uses the 2-test. The splitting algorithm is realized as follows: In the terms of one leaf node 
the contingency table (sized mk) values of independent variable (m categories) is created. After 
that the pair of the category of independent variable predictor is found and the sub-table sized 2k 
has the less important value of  2- test. These two categories are merged. By this operation the new 
contingency table is created – sized (m – 1)k. The merge procedure is repeated until the 
significance of 2-test declines under the pre-scribed value. Reaching this the splitting procedure of 
one parent node to several child nodes has been finished. The process continues in this way for each 
of the leaf node until the insignificant result of 2-test is reached.  

 
 
3 The Results and Evaluation 
 
The questionnaire survey was carried out on 658 respondents. It was a random sample of the Usti 
region and only people over 18 years were asked to take part in it. The idea was to keep the 
structure of respondents as close to the natural structure of population situation as possible. That is 
the reason why three control points were considered as follows: age, education and residence. 
 
3.1 Basic Information about the Structure of the Respondents 
 
54% of respondents answered “yes” to the question “Have you ever heard of a franchise before?”. 
The overall response shows that 30% of respondents have heard of it at school, 28% on the internet, 
18% in the press, 17% by friends and 7% from TV. Wide differences, however, were in the age 
structure of respondents. The results of the survey shows that nearly half of the population under 35 
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is equipped with the knowledge of the franchise from school (i.e. passive reception), while in the 
age group of 36-55 years it was only 13%. Yung people have heard of the franchise from the press 
only at 11%, older people at 28%. For ages above 56 years information from the press predominates 
(35%), followed by information by friends (25%).  
Perceptions of the advantages and the disadvantages of franchising were examined. Almost half of 
the population already perceives the franchise system as an easy way suitable even for less 
experienced people to start. There should not be a major problem to convince the “rest of the 
population” of this fact (using suitable means). 30% of respondents consider a hindrance to business 
in the first place “risks of their failure”. It is necessary to work intensively with the fact that people 
generally perceive the franchise as a solution for those who still defer starting a business (72%), but 
only a half of them (56%) would recommend the franchise to their friend. 
A branch of business that is seen as the best for starting a business was also studied. A third of 
people could be in the field of the gastronomy, 13% in education, 10% in construction, 8% in  
information technology, 7% in real estate. 
Their investment would have saved most respondents in real estate (57%), in own business (12%) 
over other forms of investment have slightly higher securities (10%). 
 
3.2 Formulation of Respondent Categories with the Similar Opinion on Doing Business  

and Franchising  
 
At first the cluster analysis classification was done on the basis of 23 variables containing answers 
to questions regarding respondents´ opinions on doing business and franchising. Because there is 
the combination of different variables types, the two-steps cluster method and dissimilarity measure 
(of the type of distance likelihood) were used.  The procedure in SPSS system evaluated as optimal 
just two clusters. The result was regarded by the procedure as a good result, see Figure 1.  

 
Figure 1: Cluster Quality  

 
The cluster merge was introduced as another variable. In the next step the classification tree for the 
newly built variable “cluster No.” As the independent variable the identification data of respondents 
was chosen.  The classification tree was created with the help of two methods which are included in 
the SPSS system, namely the CHAID method and the CRT (CART) method. In both cases the cross 
validation was selected in order to confirm the tree quality. The tree of higher quality was generated 
by the CRT method – see Figure 2.  The level of risk estimate resulted in the value of 0.253. So the 
„risk“ of misclassifying is 25.3%, the model classifies 74.7% cases correctly. 
From the tree structure it is possible to acquire the information that a similar opinion on doing 
business and franchising occurs with higher educated people, managers, respondents aged more 
then 35 living in big cities and aged less than 35 living in the villages which are larger then 10 000 
inhabitants working in their job position from one up to five years. The second group of similar 
opinion people consists of persons without higher education aged more then 35 years living in the 
cities of up to 50 000 inhabitants and also persons under 35 years living in small villages and also 
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young people from middle – and bigger sized cities working in their positions for the period of one 
to five years.  
 

 
Figure 2: CRT – the opinion on doing business and franchising  
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3.3 The Respondent Classification from the Point of View of Their Willingness to Start 
Their Own Business   

 
The next step was focused on the respondent classification from the point of view of their 
willingness to start their own business. The classification tree dependent variable “Willingness to 
start own business” which takes the value Yes – No. The respondent identification data was chosen 
as the independent variables. Both of the above mentioned methods were used again to create the 
tree. In this case the better result was generated by the CHAID method – see Figure 3. The risk 
estimate value resulted in 0.224. So the „risk“ of misclassifying is 22.4%, the model classifies 
77.4% cases correctly. 
Due to the tree structure it was found that the highest level of willingness to start and run their own 
business show the unemployed people, the ordinary employees aged less than 35 years and 
a substantial part of these persons is composed by managers and self-employed people. The 
significant disinclination to run one´s own business was identified among ordinary employees aged 
more than 35 years.   

    
Figure  3: CHAID – willingness (business)   Figure 4: CRT – investments   

 
 

3.4 The Respondent Classification according to Their Investment Criteria   
 
In the last step, attention to respondent classification according to their criteria for surplus funds 
allocation was paid. In this case the quality of the two trees generated by both the methods was the 
same, unfortunately worse than in the previous cases. CRT tree is demonstrated in Figure 4. The 
risk estimate value is 0.332. So the „risk“ of misclassifying is 33.2%, the model classifies 66.8% 
cases correctly. 
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The results of the above mentioned classification can be summarized as follows: Managers and 
ordinary employees holding their position less than one year think about the investment allocation 
in a similar way. For above the average, they prefer investment in franchise systems and the 
investment allocation in the bonds and subjects of art is subordinated to franchise. Conversely, they 
have a negative approach to real estate investments.  
The next group having similar consideration towards investments consists of managers and ordinary 
employees holding their position for more than one year. They prefer funds allocation in the field of 
real estate and savings accounts designed for future construction. In contrast they avoid investment 
into both their own businesses and businesses under the franchise system.  
The third group contains entrepreneurs who (as was expected) highly prefer business on their own 
account and refuse investments in the field of real estate, savings accounts designed for future 
construction and objects of art.  
The last group consists of unemployed persons who give significant priority to deposits. They also 
prefer bond purchase and franchise investment at an above average. They are representatives of 
refusing objects of art purchases and under the average they would like to place their funds in the 
real estate and construction savings accounts.  
 
 
4 Conclusion   
 
The results of the survey show that the majority of the population is equipped with the knowledge 
of franchise from school (i.e. passive reception) and that is why it would be worth considering an 
involvement in further education at schools (lectures, competitions, eventually the usage of student 
media). Half of the respondents who would eventually start their business recruits from ordinary 
employees who in many cases occupy their position for more then five years. Therefore, 
franchising for them must be a matter of change and new hope. Also the franchise seems to be a 
chance for unemployed people and it is therefore appropriate to focus the Labour Office courses on 
franchising opportunities. 
The following reasons can be (almost equally) regarded as the greatest obstacle to starting a 
business: the risk of failure, lack of funds and administrative barriers. As noted in part above, it is 
necessary to develop such a franchise system promotion which is based on the elimination of fear, 
mainly the fear of the risk of failure and fear of administrative complications. 
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INDICATORS   OF  TURNING   POINTS 

  IN  CZECH   FINANCIAL   TIME SERIES 
 

ŽIŽKA David, (CZ) 
 
 

Abstract. The development of financial time series was analysed separately before and after 
depression (2008-2009) in Czech financial markets. In the first part financial time series of 
stocks and exchange rates were modeled. The volatility models were used mainly. In the second 
part the turning points in specific time series were tested and the deviations of parameters in 
different parts of time series were analysed. Final part was focused on finding indicators which 
predicted the turning points. 
 
Key words. Turning points, financial time series, volatility models 
 
Mathematics Subject Classification:  62M10 

1   Introduction 

Czech financial market was strongly hit by the financial crisis during 2008-2009. Behavior of 
financial time series was heavily predictable. This study is focused on analyzing the behavior of 
these series.  
Financial time series often exhibit characteristics that allow them to model using classical methods. 
In particular, the outliers, variance is depend on time, coefficient of kurtosis is high. Models of 
volatility can cover these properties. 
The input data for analysis are three time series. Daily values of ČEZ a.s. (Czech Power Company), 
index PX (Prague market index), exchange rates of CZK/EUR. 
Reference period is during 2002- June 2010 and involves CEZ, PX, CZK/EUR close daily values. 
Logarithmic returns expressed as percentages will be used. 
First part is focused on estimating the best volatility models during 2002-2010. 
Second aim of this study is model time series during depression 2008-2009 and compares with 
parameters whole time series. For this purpose is necessary to determine the turning points in the 
time series. For detection the turning points can be used technical analysis but for purpose of this 
study are chosen local maximum (minimum) for each time series before (after) market fall. 
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Final part is focus on finding indicator which predicts the turning points. Analyse short term before 
turning points by volatility models. Forecasts by volatility models are compared with real values. 

1.1   Models of volatility 

GARCH model 
 
GARCH means Generalized Autoregressive Conditional Heteroskedasticity model.  Bollerslev 
(1986) proposes a useful extension of ARCH model known as the generalized ARCH (GARCH) 
model. Bollerslev extended ARCH model of delayed conditional variance. 
 
GARCH (1,1) 

2
11

2
11

2
  ttt   (1.1)

 
Positive conditional variance ensures the conditions: 0,0,0 11   . 

IGARCH model 
 
IGARCH means Integrated GARCH and is a special form of the more general GARCH model. 
It looks exactly like a regular GARCH model. In order for this model to be an IGARCH model, it 
has to fulfill the following condition: alpha+beta=1. 
Hence, the conditional variance of the IGARCH model is clearly non-stationary. This has important 
implications for interpreting the volatility of such a time series. If alpha and beta indeed sum up to 
1, the volatility of the model is not mean-reverting. External shocks leading to the change in 
volatility are permanent. 

EGARCH model 
 
Exponential GARCH model by Nelson (1991) describes an asymmetric effect between positive and 
negative asset returns. Conditional variance is an asymmetric function of past t  as defined by  

 
EGARCH (p,q) 
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There are no restrictions on the parameters ii  ,  to ensure nonnegativity of the conditional 

variances. If 0 i , the variance tends to rise (fall) when it  is negative (positive) in accordance 

with the empirical evidence for stock returns. Assuming 1 tttz  , is i.i.d. normal, it follows that 

is t covariance stationary provided all the roots of the autoregressive polynomial   1  lie 

outside the unit circle. 
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TGARCH 
 
Threshold GARCH model by Zakoian [7] is similar to GJR GARCH model by Glosten, 
Jagannathan and Runkle (1993).  Specification for conditional variance is 
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where 
tI =1 if t  <0 and 0 otherwise. 

Positive and negative returns have different effects on conditional variance in this model. Positive 
returns ( 0it ) affect i , but negative returns affect ki   . If 0k  negative returns increase 

volatility and called there are leverage effect for the i-th order. If 0k the returns impact is 

asymmetric. GARCH model is a special case of model TARCH if threshold expression equals zero. 

2   Model description 

1 2.1  CEZ 

Following graphs show absolute close daily values and returns in percentage of CEZ stocks. The 
beginning of the market decline in 2008 is evident from the x-axis value 1600. 
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Fig. 2.1 Values of CEZ stocks during 2002-2010 
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Fig. 2.2 Returns of CEZ stocks during 2002-2010 (in percentage) 
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Linear models 
 
In GARCH(1,1) model are parameters statistically significant and their sum is close to 1 
(alpha+beta=0.9731). For this reason, we can construct an accurate model IGARCH. 
 

Table 2.1  IGARCH (1,1) model parameters 
 

IGARCH Coefficient Std.Error   t-value   t-prob 
omega 8.6507E-6 1.2132E-6 7.13 0.0000 
alpha_1 0.1352 0.007089 19.07 0.0000 
beta_1 0.8648 0.007089 122.00 0.0000 

 
 

IGARCH (1,1): 2
1

2
1

62 8648.01352.065.8 
  ttt E   

 

Nonlinear models 
 
Sign bias (SB) test indicates impact of positive and negative returns on conditional 
heteroscedasticity. Negative size bias (NSB) test and Positive size bias (PSB) test indicate impact of 
positive and negative returns on conditional heteroscedasticity depend on their values. Model 
TGARCH confirms result of SB, PSB, NSB tests. Parameter treshold is statistically significant at 
1% level in the model and indicates nonlinearity. 
 

Table 2.2  TGARCH (1,1) model parameters 
 

TGARCH Coefficient Std.Error   t-value   t-prob 
omega 0.159391 0.02762 2.58    0.0101 
alpha_1 0.062334 0.01163 3.25    0.0010 
beta_1 0.859369 0.01285 27.5 0.0000 

Threshold 0.093551 0.01988 3.77 0.0000 
 

TGARCH (1,1): )0(0936.00623.08594.0 1
2

1
2

1
2

1
2   ttttt I   

Model checking 
Portmanteau test does not confirm autocorrelation for both models. Further, Jarque-Bera test 
(Jarque, Bera 1987) often called asymptotic test does not confirm normal distribution. Result of 
ARCH test does not confirm conditional heteroscedasticity.  

2.2 PX index 

Linear models 
 
In GARCH(1,1) model are parameters statistically significant and their sum is close to 1 
(alpha+beta=0.9826). For this reason, we can construct an accurate model IGARCH. 
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Table 2.3  IGARCH (1,1) model parameters: 
 

IGARCH Coefficient Std.Error   t-value   t-prob 
omega 3.6497E-6 6.111E-7 5.97 0.0000 
alpha_1 0.1539 0.0133 11.53 0.0000 
beta_1 0.8461 0.0133 63.42 0.0000 

 
IGARCH (1,1): 2

1
2

1
62 8461.01539.065.3 
  ttt E   

Nonlinear models 
 
SB, PSB, NSB tests indicate nonlinearity. Model TGARCH confirms result of SB, PSB, NSB tests. 
Parameter threshold is statistically significant at 1% level in the model and indicates nonlinearity. 
 

Table 2.4  TGARCH (1,1) model parameters 
 

TGARCH Coefficient Std.Error   t-value   t-prob 
omega 0.074381 0.01459 3.73 0.0000 
alpha_1 0.071807 0.01429 5.04 0.0000 
beta_1 0.829651 0.01845 35.6 0.0000 

Threshold 0.136707 0.03099 3.01 0.0030 
 

TGARCH(1,1): )0(13676.00718.08297.00744.0 1
2

1
2

1
2

1
2   ttttt I   

Model checking 
Portmanteau test does not confirm autocorrelation for both models. Further, asymptotic test does 
not confirm normal distribution. Result of ARCH test does not confirm conditional 
heteroscedasticity.  

2.3 CZK/EUR exchange rates 
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Fig. 2.3 Returns of CZK/EUR exchange rates during 2002-2010 (in percentage) 
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Linear models 

In GARCH(1,1) model are parameters statistically significant and their sum is close to 1 
(alpha+beta=0.9891). For this reason, we can construct an accurate model IGARCH. 
 

Table 2.5 IGARCH (1,1) model parameters 
IGARCH Coefficient Std.Error   t-value   t-prob 

omega 1.7178E-7 3.3086E-8 5.19 0.0000 
alpha_1 0.0928 0.00872 10.64 0.0000 
beta_1 0.9072 0.00872 104.03 0.0000 

 
IGARCH (1,1): 2

1
2

1
72 9072.00928.078.1 
  ttt E   

Nonlinear models 

SB, PSB, NSB tests do not indicate nonlinearity. Model EGARCH and TGARCH confirm result of 
SB, PSB, NSB tests. Parameters are not statistically significant in the models.  
 

3 Turning points 

For analyzing series of economic downturn it is necessary to determine turning points (TP) which 
define the term. For detection the turning points can be used technical analysis e.g. Chaikin's 
Volatility, Bollinger Bands. These technical indicators give SELL signals for several days after 
local maximum. Chaikin's Volatility Index (10-day exponential moving average) for PX gives 
SELL signal 5 days after reaching local maximum (Fig.3.1). For purpose of this study are chosen 
local maximum (minimum) for each time series before (after) market fall. Behavior of volatility 
models will be analyzed in these points.  

Table 3.1 Turning points 
TP Negative TP Positive TP 

CEZ 1.9.2008 5.3.2009 
PX 1.9.2008 18.2.2009 

CZK/EUR 22.7.2008 19.2.2009 
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Fig. 3.1 Negative turning point - PX index during 1.7.2008-30.12.2008 and Chaikin's Volatility Index 
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4 Comparison of models before and during depression 

Time series are estimated by volatility models as a whole from 2002 to the "Negative TPs". Further, 
series are divided by "Positive TPs” and estimated individual parts. For testing structural changes is 
used Chow test. 

Chow test 
Chow test introduced by G.Chow [6] determines whether the coefficients in the model are 
consistent with coefficients in the groups generated by separating the time series of the turning 
point to 2 (or more) groups. F statistic: 
 

kT

SSRSSR
k

SSRSSRRSSR

F

2
21

21







 

(4.1)

RSSS, SSR1, SSR2 = sum of squared scaled residuals 
 
F0,95(k,T-2k)=2.6049 

Table 4.1 F-values 
 

 CEZ PX CZK/EUR 
F <0.001 <0.001 <0.001 

 
Values of criteria F are in all cases less than the critical value, do not reject the null hypothesis of 
stability parameters. Parameters do not change in time. 

5 Indicator  

Strong market failure may be caused by fundamental information which starts confidence of 
investors. These turning points are identified in Chapter 3. In the immediate period preceding TP 
investors can just wait for this information. This assumption verify by analyzing the period before 
the TP. This expectation should be accompanied by a reduction in the value of the conditional 
variance model. This theory is supported by a significant reduction in the volume of shares traded 
before the turning point. 

5.1 Conditional variance 

Conditional variance reached a local minimum in the turning point. For all three time series was 
tested whether this local minimum is also a global minimum in moving periods (1 year ago, 2 years 
ago, etc.).  
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Fig. 5.1 Conditional variance of TGARCH(1,1) model - CEZ stocks during 2002-2008 

 
 
 
For the tested models were stored values of conditional variance. Minimum of the conditional 
variance was found for each year and compared with NTP values (Table 5.1). The assumption was 
refuted already in the first year for CEZ and CZK/EUR. Both values were identical only for PX 
index in 2008. Did not prove conclusively that the downturn was preceded by minimums of the 
conditional variance. 
 

Table 5.1 Minimums of conditional variance 
 

  NTP 2008 2007 2006 2005 2004 2003 2002 
CEZ 1.898  1.555  1.558  1.522  1.524  1.551  1.397  1.683 
PX  0.848  0.848  0.591  0.472  0.431  0.478  0.481  0.633 
CZK/EUR  0.195  0.110  0.441  0.488  0.622  0.052  0.678  0.091 

 

5.2 Prediction of the conditional variance 

Prediction of TGARCH (1,1) model in the negative turning point was made for CEZ stocks. 
Frances and Dijk [5]  suggested forecasts of TGARCH model. Assuming t  distribution is symetric 

around 0, we can construct prediction of conditional variance (horizon h, in time T): 
 
 
TGARCH (1,1): 

        2
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1
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2

0
111

2
2
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i

i
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

 (5.1) 

 
 
Forecast of the conditional variance is shown in Figure 5.2. Estimation of conditional variance from 
real data is shown in following Figure 5.3. The comparison of graphs 5.2 and 5.3 is noticeable that 
the prediction of conditional variance TGARCH was distorted in the turning point. For this reason it 
is appropriate to be cautious when forecasting at points close to global minimum of the conditional 
variance. 
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Fig. 5.2 Forecast of the conditional variance of TGARCH(1,1) model - CEZ stocks around NTP (-20;+20) 
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Fig. 5.3 Conditional variance of TGARCH(1,1) model - CEZ stocks – NTP + 20 values 

6   Conclusion  

First part was focused on the models estimate during 2002-2010. For CEZ and PX were selected as 
the best non-linear models of volatility. The TGARCH models confirmed different effects of 
positive and negative returns on the conditional variance. The TGARCH models were statistically 
better than the EGARCH models. Time series of CZK/EUR were modeled by linear IGARCH. 
Parameters of non-linear model were not statistically significant for CZK/EUR. These models can 
by used for forecasts. 
In second part were finded turning points and modeled parts of time series. Structural changes were 
tested. Coefficients in all models are consistent with coefficients in the groups generated by 
separating the time series by turning points. 
In final part was analyzed process of the conditional variance before and after turning points. Time 
series were estimated by volatility models until the turning points. The indicator minimum of the 
conditional variance were tested. For selected turning points were not found significant difference 
in the values of the conditional variance. Assumption was confirmed only for PX index in 2008. 
Did not prove conclusively that the downturn in 2008 was preceded by minimums of the 
conditional variance (for selected models). 
Subsequently, the prediction based on volatility models was made for next 20 values. Further, the 
back test was made for these forecasts. It is appropriate to be cautious when forecasting at points 
close to global minimum (maximum) in the conditional variance. 
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